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Pattern Recognition and Data Pattern Recognition and Data 
ClassificationClassification

Pattern recognition is
concerned with machine 
recognition of 
regularities in noisy or 
complex environments.
the search for 
structure in data.

Involves placing an input 
pattern into one of 
possibly many decision 
classes.

Pattern
Recognition

Machine

Brain ?!
Neurons ?!
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RecognitionRecognition
The ability to classify data into (known) categories.
Human beings have an innate ability to recognize complex 
patterns with effortless ease, based on categories created 
internally without conscious intervention. 

Parents recognize the cry of a child
Easily identify an individual from a silhouette
Recognize a fast moving car at dusk.

Real world embedded pattern recognition systems draw on the 
brain metaphor 
Applications include

ZIP code readers
DNA fingerprinting
Medical diagnosis
Occluded target recognition
Signature verification



A Pattern ClassifierA Pattern Classifier
Rain

Pattern Recognition
Machine

Vector of feature 
measurements
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A Decision BoundaryA Decision Boundary

Class 
Separating
Boundary

Class 2 New 
measurement

Class 1



Basic Pattern Classification ProblemBasic Pattern Classification Problem

Given some samples of data 
measurements of a real world system 
along with correct classifications for 
patterns in that data set, make accurate 
decisions for future unseen examples.



Iris Data ClassificationIris Data Classification
It is easy to separate 
iris sestosa data 
from iris versicolor
and iris virginica
It is much more 
difficult to decide 
where to place a 
separating line 
between iris 
versicolor and iris 
virginica
Any placement of the 
straight line will 
cause some pattern 
to get misclassified!
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TwoTwo--Class Data Classification Class Data Classification 
ProblemProblem

Given a set of Q data samples or 
patterns X = {X1, . . . ,XQ},Xi � Rn, drawn 
from two classes C1 and C2, find an 
appropriate hyperplane that separates 
the two classes so that the resulting 
classification decisions based on this 
class assignment are on average in close 
agreement with the actual outcome. 



Convex Sets, Convex Hulls and Convex Sets, Convex Hulls and 
Linear Linear SeparabilitySeparability

Let X, Y � S � Rn, 
then S is convex iff
λX + (1 − λ)Y � S, 0 ≤ 
λ ≤ 1, �X, Y �S.
Equivalently, a set 
S is convex if it 
contains all points 
on all line segments 
with end points in 
S.



Convex HullConvex Hull
The convex hull, C(Xi ), of a pattern set 
Xi is the smallest convex set in Rn which 
contains the set Xi .
Consider every convex set Sα, such that 
Xi � Sα� Rn, α � I, where I is an index set. 
Then the convex hull of Xi, C(Xi ) =
∩α�I Sα.

I



MATLAB Generated Convex Hulls MATLAB Generated Convex Hulls 
For Iris DataFor Iris Data
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Linearly Separable Classes and Linearly Separable Classes and 
Separating HyperplaneSeparating Hyperplane

Two pattern sets Xi and 
Xj are said to be linearly 
separable if their convex 
hulls are disjoint, that is 
if C(Xi ) ∩ C(Xj ) = φ.
One separating 
hyperplane is the 
perpendicular bisector of 
the straight line joining 
the closest two points on 
the disjoint convex hulls.



Space of Boolean FunctionsSpace of Boolean Functions
An n-dimensional 
Boolean function is a 
map from a domain 
space that comprises 
2n possible 
combinations of the 
n variables into the 
set {0, 1}.
B2

(0,0) = φ (1,0) ={x

(0,1) = {x2} (1,1) = X

1}



Boolean Functions in nBoolean Functions in n--DimensionsDimensions
In a Boolean function, each of 2n domain points 
maps to either 0 or 1, f : Bn → {0, 1}. 
Let X0 denote the set of points that map to 0  
and X1, the set of those that map to 1. Sets 
X0,X1 comprise points that are pre-images of 
range points 0, 1: X0 = f −1(0) and X1 = f −1(1). 
Each unique assignment of 0-1 values to the 2n 

possible inputs in n-dimensions represents a 
Boolean function. 
Therefore, in n-dimensions, there are 22n such 
unique assignments that can be made, and thus 
22n possible functions.



SeparabilitySeparability of Boolean Functionsof Boolean Functions

Linearly separable sets can be separated 
by a straight line in 2 dimensions.
In higher dimensions we say the sets are 
segregated by a separating hyperplane



The Boolean AND Function is The Boolean AND Function is 
Linearly SeparableLinearly Separable

Truth Table (1,1) maps to 1
as indicated by 
a filled circle

Separating line

x2

x1

1x 2x
∧f

0
0
0
1

0
1
0
1

0
0
1
1

(0,0)

(0,1)

(1,0)

(1,1)

0

1 (0,0), (0,1), and (1,0) map to 0,
as indicated by unfilled circles.



Binary Neurons are Pattern Binary Neurons are Pattern 
DichotomizersDichotomizers

Neuron Input vector X = (1, x1, x2)Weight vector W = (w0,w1,w2)
Internal bias modelled by weight w0, with a constant +1 
input. 
Neuronal activation  y = XTW = w1x1 + w2x2 + w0
Neuron discriminant function y(X) = 0 if y > 0, s = 1, and          
if y < 0, s = 0.



Discriminant FunctionDiscriminant Function
Given a fixed set of weights, the neuron 
fires a +1 signal for inputs (x1, x2) which 
yield positive activation and fires a 0 for 
inputs that yield negative activation. 
Inputs are thus separated into two 
“classes”. Inputs satisfying the discriminant
function yield zero activation.
The discriminant function can be written as



Discriminant FunctionDiscriminant Function
The neuron discriminant
function thus represents a 
straight line in the two 
dimensional pattern space
This straight line slices the 
plane into two halves:

one half where patterns 
cause the neuron to 
generate positive inner 
products and thus fire a 
+1; 
the other half where 
pattern space points cause 
the neuron to generate 
negative inner products 
and thus fire a 0.

Small arrow on the straight line 
indicate the half plane that
translates to +1 signal value  



Example: Geometrical Design of Example: Geometrical Design of 
AND ClassifierAND Classifier

slope m = −w1/w2 = −1,  
intercept c = −w0/w2 = 
1.5. 
Choosing w1 = w2 = 1 and      
w0 = −1.5 yields a neuron 
classifier that 
appropriately partitions 
the pattern space for 
AND classification.  
The value of the 
threshold is −1.5.

x2
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(1,1)



Example: Geometrical Design of Example: Geometrical Design of 
AANDND ClassifierClassifier

Discriminant function 
thus becomes

x2 = -x1 + 1.5

Pattern points
on this side of
the separating
line cause the
neuron to fire
a +1 signal
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Solving The AND Problem By Setting Solving The AND Problem By Setting 
The Signal Function Shift In (1,2)The Signal Function Shift In (1,2)
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Looking at the design problem in s-q plane, s should be 1 
only if q = 2 and zero otherwise.
The signal function anywhere in the interval (1,2) i.e., 
1+ε and 2-ε would get the appropriate result.
Our design placed signal function at 1.5



Summary of Important Properties of Summary of Important Properties of 
TLNsTLNs

A threshold logic neuron employs a single inner 
product based linear discriminant function          
y : Rn+1 → R, y(X) = XTW where X,W � Rn+1 and 
the bias or threshold value w0, is included into 
the weight vector.
The hyperplane decision surface y(X) = 0 divides 
the space into two regions, one of which the TLN 
assigns to class C0 and the other to class C1.We 
say that the TLN dichotomizes patterns by a 
hyperplane decision surface in Rn.



Summary of Important Properties of Summary of Important Properties of 
TLNs (contd.)TLNs (contd.)

The orientation of the hyperplane is  
determined by the weights w1, . . . ,wn.
The position of the hyperplane is proportional 
to w0.
The distance from the hyperplane to an 
arbitrary point X � Rn is proportional to the 
value of y(X).
A pattern classifier which employs linear 
discriminant functions is called a linear 
machine.



NonNon--linearly Separable Problemslinearly Separable Problems

The two convex hulls C1 and C2 of two pattern sets in figure 
(a) are sufficiently separated to ensure decision surfaces 
comprise only of hyperplanes. 

When convex hulls overlap as in figure (b), the pattern sets 
become linearly non-separable but may be non-linearly 
separable



XOR is Not Linearly SeparableXOR is Not Linearly Separable

The geometry of the Boolean XOR function 
shows that two straight lines are required for 
proper class separation
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TheoremTheorem

No single threshold logic neuron 
exists that can solve the XOR 
classification problem



Proof: By ContradictionProof: By Contradiction
Note: XOR classification problem is equivalent to the 
simple modulo-2 addition
Assume a TLN with weights (w0, w1, w2) and inputs x1
and x2. 
For XOR operation
Since mod 2 arithmetic is symmetric,

This implies
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Proof: By Contradiction (contd.)Proof: By Contradiction (contd.)
Notice that wx + w0 is a first degree polynomial in x, 
which must be less than  zero for x=0 (0   0),
greater than zero for x=1 (0   1 and 1   0), and less  
than zero for x = 2 (1   1).

This is impossible since a first degree polynomial is 
monotonic and cannot therefore change sign more 
than once.

We thus conclude that there is no such polynomial, 
and that there is no TLN that can solve the XOR 
problem.

⊕
⊕

⊕
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Solving XOR ProblemSolving XOR Problem
OR and NAND 
functions realizable 
using a single binary 
neuron
Combining OR and 
NAND neurons using 
a logical AND (which 
can be implemented 
using a third binary 
neuron), XOR 
problem can be 
solved



Network of TLNs to solve XORNetwork of TLNs to solve XOR

A two-layered network 
architecture to implement 
the XOR function.

A more common three-
layered version of the same 
network with linear input 
units shown explicitly



Capacity of a Simple Threshold Capacity of a Simple Threshold 
Logic NeuronLogic Neuron

A simple TLN implements a specific class of 
functions from Rn into the set {0, 1}, namely, 
the class of linearly separable functions.
If we were to arbitrarily assign image points 0 
or 1 to some p domain points, how many such 
random assignments could we expect the TLN 
to successfully implement?
The number of such assignments that the TLN 
can correctly implement is called its capacity.



Points in General PositionPoints in General Position
Denote the number of linear dichotomies that 
can be induced on p points in n–dimensional space 
as L(p, n). 
L(p, n) is then equal to twice the number of ways 
in which p points can be partitioned by an (n − 1)–
dimensional hyperplane, since for each distinct 
partition, there are two different classifications.
Assumption: No three points in space are 

collinear, since this would effectively reduce the 
number of inducible dichotomies.



Definition: General PositionDefinition: General Position
For p > n, we say that a set of p points is 
in general position in a n–dimensional 
space if and only if no subset of n + 1
points lie on an (n − 1)–dimensional 
hyperplane. 
When p ≤ n, a set of p points is in general 
position if no (n − 2)–dimensional 
hyperplane contains the set.



ExampleExample
In top figure the lines l1, . . . , l7implement all possible linear 
partitions of of four points.

Line l3 in bottom figure could be a 
decision surface that implements 
either one of the following 
classifications: {X1,X2} � C0,     {X3,X4} � C1; or {X1,X2} � C1 and {X3,X4} � C0.

C0 is the class identified by a TLN 
signal 0; C1 is the class identified by 
a TLN signal 1.

Points in general position;

Points not in general position



The Essential QuestionThe Essential Question
Given a set of p random points in n–
dimensional space, for how many of the 
2p possible {0, 1} assignments can we find 
a separating hyperplane that divides one 
class from another? 

The answer is precisely L(p, n).



Number of DichotomiesNumber of Dichotomies

See text for details of the derivation



Probabilistic Estimate of Computable Probabilistic Estimate of Computable 
DichotomiesDichotomies

With p points in n–
dimensions there are 2p

possible functions. The 
probability that they are 
implementable by a TLN is 
then directly the ratio of 
L(p, n) and 2p.
The probability that a 
dichotomy defined on p 
points in n–dimensions is 
computable by a TLN is
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Revisiting the XOR ProblemRevisiting the XOR Problem
The number of dichotomies L(p, n) of p points in n dimensions 
provides a direct measure of the number of Boolean functions 
defined on p points that are computable by a TLN with n inputs. 
For example, a TLN with 2 inputs (and a bias weight) can 
compute the entire set of Boolean functions that are defined on 
3 points in R2. 
Because the total number of functions that can be defined on 3 
points is 23 = 8; and the total number of dichotomies that can be 
generated by 3 points in 2 dimensions is L(3, 2) = 8. 
Adding a fourth point increases the total number of possible 
functions to 24 = 16, whereas the total number of dichotomies 
that can be generated with 4 points in 2 dimensions is only L(4, 
2) = 14. 
Two functions (for example, XOR and XNOR considering the 
functions defined on B2) are not computable by a TLN (because 
they are not linearly separable).



To gain further insight…To gain further insight…
If we have a large number of dichotomies, the probability 
that the TLN will be able to solve a classification problem 
increases i.e., there is a larger chance that some dichotomy 
will be able to solve the problem. 
Since a TLN can solve only a linearly separable problem, to  
solve a linearly non-separable problem we have to make it 
linearly separable. How can this transformation be 
effected ? 
There are two ways:

If somehow we can reduce the number of points p, then it might 
be possible that the mapping from the reduced set of points into
the range space may become linearly separable.
We might increase the dimension since the number of possible 
linear dichotomies then increases, and the probability that the 
linearly nonseparable problem at hand becomes linearly 
separable, increases.



Solution 1: Reduce the Number of Solution 1: Reduce the Number of 
PointsPoints

The logical functions implemented by each TLN (first layer 
nodes do not compute anything) is indicated in the figure. 
The XOR problem has been solved in two steps:

first there is a map f1 : B2 → B2

Then, there is a second map f2 : B2 → B
Note that Y = f1(X) where 212211 ; xxyxxy =+=



Four Points In 2Four Points In 2--d Mapped To Three  d Mapped To Three  
Make XOR Linearly SeparableMake XOR Linearly Separable



Solution 2: Increase the DimensionSolution 2: Increase the Dimension

We are now looking for an appropriate mapping 
f1 : B2 → B3 such that f2 : B3 → B is linearly 
separable.



The AND Function Added As The The AND Function Added As The 
Third DimensionThird Dimension



Multilayer NetworksMultilayer Networks
TLNs can be connected into multiple layers in a feedforward
fashion.
It is common to have more than one hidden layer when solving a 
classification problem especially when one has a number of 
disjoint regions in the pattern space that are associated into a
single class. 
We make the following observations for TLNs with two hidden 
layers apart from the input and the output layer. 

Each neuron in the first hidden layer forms a hyperplane in the 
input pattern space.
A neuron in the second hidden layer can form a hyper-region from 
the outputs of the first layer neurons by performing an AND 
operation on the hyperplanes. These neurons can thus approximate 
the boundaries between pattern classes.
The output layer neurons can then combine disjoint pattern classes 
into decision regions made by the neurons in the second hidden 
layer by performing logical OR operations.



The Geometry Of Multilayered TLN The Geometry Of Multilayered TLN 
NetworksNetworks



TheoremTheorem
No more than three layers in binary 
threshold feedforward networks are 
required to form arbitrarily complex 
decision regions.



Proof: By ConstructionProof: By Construction
Consider the n–dimensional case: X � Rn. 
Partition the desired decision regions into small hypercubes.
Each hypercube requires 2n neurons in the first layer (one 

for each side of the hypercube). 
One neuron in the second layer takes the logical AND of the 
outputs from the first layer neurons. Outputs of second 
layer neurons will be high only for points within the 
hypercube.
Hypercubes are assigned to the proper decision regions by 

connecting the outputs of second layer neurons to third 
layer neurons corresponding to the decision region that the 
hypercubes represent by taking the logical OR of 
appropriate second layer outputs.



How Many Hidden Nodes Are Enough?How Many Hidden Nodes Are Enough?
Theorem (Theorem (CaoCao, , MirchandaniMirchandani, 1989), 1989)

In n-dimensional 
space, the maximum 
number of regions 
that are linearly 
separable using h
hidden nodes are

See text for details.

k.h  0,  
k
h

  where),(
0

<=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∑

=

n

k k
h

nhM


