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Supervised Learning Supervised Learning 
I: I: 
PerceptronsPerceptrons and LMSand LMS



Two Fundamental Learning ParadigmsTwo Fundamental Learning Paradigms

Non-associative
an organism acquires the properties of a 
single repetitive stimulus.

Associative
an organism acquires knowledge about the 
relationship of either one stimulus to 
another, or one stimulus to the organism’s 
own behavioural response to that stimulus.



Examples of Associative LearningExamples of Associative Learning
Classical conditioning

Association of an unconditioned stimulus (US) with a conditioned 
stimulus (CS). 
CS’s such as a flash of light or a sound tone produce weak responses.
US’s such as food or a shock to the leg produce a strong response.
Repeated presentation of the CS followed by the US, the CS begins 
to evoke the response of the US.
Example: If a flash of light is always followed by serving of meat to a 
dog, after a number of learning trials the light itself begins to 
produce salivation.

Operant conditioning
Formation of a predictive relationship between a stimulus and a 
response.
Example: Place a hungry rat in a cage which has a lever on one of its 
walls. Measure the spontaneous rate at which the rat presses the
lever by virtue of its random movements around the cage. If the rat 
is promptly presented with food when the lever is pressed, the 
spontaneous rate of lever pressing increases!



Reflexive and Declarative LearningReflexive and Declarative Learning
Reflexive learning

repetitive learning is involved and recall does not 
involve any awareness or conscious evaluation.

Declarative learning
established by a single trial or experience and 
involves conscious reflection and evaluation for its 
recall.

Constant repitition of declarative knowledge 
often manifest itself in reflexive form.



Important Aspects of Human Important Aspects of Human 
MemoryMemory

Two distinct stages:
short-term memory 
(STM)
long-term memory (LTM) 

Inputs to the brain are 
processed into STMs which 
last at the most for a few 
minutes.
Information is downloaded 
into LTMs for more 
permanent storage: days, 
months, and years. 
Capacity of LTMs is very 
large.

Memory 
recalled

SHORT TERM MEMORY
(STM)

LONG TERM MEMORY
(LTM)

Download

Input 
stimulus

Recall 
Process

Recall process of these memories 
is distinct from the memories 
themselves.



Important Aspects of Human Important Aspects of Human 
MemoryMemory

Recall of recent memories is more easily disrupted than that of 
older memories. 
Memories are dynamic and undergo continual change and with time 
all memories fade.
STM results in 

physical changes in sensory receptors.
simultaneous and cohesive reverberation of neuron circuits.

Long-term memory involves
plastic changes in the brain which take the form of 
strengthening or weakening of existing synapses
the formation of new synapses.

Learning mechanism distributes the memory over different areas
Makes robust to damage
Permits the brain to work easily from partially corrupted 
information.

Reflexive and declarative memories may actually involve different 
neuronal circuits.



From Synapses to From Synapses to BehaviourBehaviour: The : The 
Case of Case of AplysiaAplysia

Aplysia has a respiratory 
gill that is housedin the 
mantle cavity (which is a 
respiratory chamber 
covered by the mantle 
shelf) on the dorsal side of 
the mollusc. 
The mantle forms a spout 
at the dorsal end which 
usually protrudes between 
the parapodia which are 
wing-like extensions of the 
body wall.



GillGill––Siphon Withdrawal (GSW) Siphon Withdrawal (GSW) 
ReflexReflex

When a tactile stimulus is applied to the 
siphon or the mantle shelf, two reflexes 
are initiated: 

the siphon contracts behind the parapodia
the gill is withdrawn into the mantle cavity. 

The gill–siphon withdrawal (GSW) reflex 
is an example of an innate defensive 
reflex.



Cellular Mechanism of GSW Cellular Mechanism of GSW 
HabituationHabituation

Siphon 
Skin

SN GillSN MN

IN

MN:  Mentor Neuron
IN:  Interneuron
SN:  Sensory Neuron

Two dozen sensory neurons are embedded in the siphon 
skin
One of such sensory neurons is illustrated in the above 
figure
A sensory neuron terminates on a cluster of six motor 
neurons that activate the gill. Sensory neurons also excite 
motor neuron via an inter-neuronal pathway.



Habituation CascadeHabituation Cascade
Siphon 

Skin
Excitatory synaptic

potentials in interneuron
and motor neuron cells

Stimulus
SN

These potentials undergo
spatio-temporal summation to
generate strong discharges
from motor neurons causing
the gill to withrdraw briskly

Repeated 
presentation
of stimulus

Potentials produced by
interneuron and motor
neuron cells gradually

becomes weaker

Strength of gill
withdrawal reflex

is reduced

Reduced transmitter release 
from the presynaptic terminal

Cause for decrease in
post-synaptic potential

Inactivation of a special 
type of Ca++ channel in
pre-synaptic terminal

With each action potential a lesser
amount of calcium flows into the

the pre-synaptic terminal. 

Siphon 
Skin

Cause for reduced
transmitter release

SN



Cellular Mechanism of GSW Cellular Mechanism of GSW 
SensitizationSensitization

Sensitization is brought about 
by a sudden enhancement in 
synaptic transmission. 
Example: 

Repeated presentations of tactile 
stimuli to the siphon leads to 
habituation
The delivery of a brief electrical 
stimulus to the tail rapidly 
facilitates excitatory 
postsynaptic potentials produced 
in motor neurons on sensory 
stimulation.

The same set of synapses that 
are depressed by habituation, 
are enhanced by sensitization. 
The sensitizing stimulus 
activates a group of facilitating 
inter neurons that synapse axo-
axonically on the terminals of 
sensory neurons.

Siphon
Skin

Tail FN

SN MN

IN

Gill

MN:  Motor Neuron
FN:  Facilitatory Neuron
SN:  Sensor Neuron
IN:  Interneuron



Sensitization Cascade Sensitization Cascade Involves Involves 
PresynapticPresynaptic FacilitationFacilitation

Activation of specialized protein 
receptors in the SN synaptic terminal

Serotonin 
neurotransmitters 
released from FNs

Facilitation of adenylyl cyclase
increases the concentration 

of  cyclic adenosine monophospate (cAMP)

Activation of cAMP dependent protein 
kinase phosphorylates K+ channel protein

Implies that the action potential in 
the synaptic terminal will get prolonged 

which allows the calcium channels 
to be activated for a longer time.

Leads to increased concentration 
of calcium in the terminal and consequently

a greater amount of transmitter release

Reduces the component of the K+ current 
that repolarizes the action potential



Learning AlgorithmsLearning Algorithms
Define an architecture-dependent procedure to encode 
pattern information into weights 
Learning proceeds by modifying connection strengths.
Learning is data driven:

A set of input–output patterns derived from a (possibly 
unknown) probability distribution.

Output pattern might specify a desired system response for 
a given input pattern
Learning involves approximating the unknown function as 
described by the given data.

Alternatively, the data might comprise patterns that 
naturally cluster into some number of unknown classes

Learning problem involves generating a suitable classification 
of the samples.



Supervised LearningSupervised Learning
Data comprises a set of 
discrete samples drawn 
from the pattern space 
where each sample relates 
an input vector Xk � Rn to an 
output vector Dk � Rp.

The set of samples 
describe the behaviour of 
an unknown function           
f : Rn → Rp which is to be 
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The Supervised Learning ProcedureThe Supervised Learning Procedure
Error information fed back for network adaptation

ErrorSkXk

DxNeural Network

We want the system to generate an output Dk in 
response to an input Xk, and we say that the system has 
learnt the underlying map if a stimulus Xk’ close to Xk
elicits a response Sk’ which is sufficiently close to Dk. 
The result is a continuous function estimate.



Unsupervised LearningUnsupervised Learning
Unsupervised learning provides the system with an input 
Xk, and allow it to self-organize its  weights to generate 
internal prototypes of sample vectors.                    
Note: There is no teaching input involved here.
The system attempts to represent the entire data set 
by employing a small number of prototypical vectors—
enough to allow the system to retain a desired level of 
discrimination between samples. 
As new samples continuously buffer the system, the 
prototypes will be in a state of constant flux. 
This kind of learning is often called adaptive vector 
quantization



Clustering and ClassificationClustering and Classification
Given a set of data samples {Xi}, Xi � Rn, is it possible to identify 
well defined “clusters”, where 
each cluster defines a class of 
vectors which are similar in 
some broad sense?
Clusters help establish a 
classification structure within a 
data set that has no categories 
defined in advance. 
Classes are derived from 
clusters by appropriate 
labelling.
The goal of pattern 
classification is to assign an 
input pattern to one of a finite 
number of classes.
Quantization vectors are called 
codebook vectors.
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Characteristics of Supervised and Characteristics of Supervised and 
Unsupervised LearningUnsupervised Learning



General Philosophy of Learning: General Philosophy of Learning: 
PPrinciple of Minimal Disturbance rinciple of Minimal Disturbance 

Adapt to reduce the output error for the 
current training pattern, with minimal 
disturbance to responses already learned.



Error Correction and Gradient Error Correction and Gradient 
Descent RulesDescent Rules

Error correction rules alter the weights of a 
network using a linear error measure to reduce the 
error in the output generated in response to the 
present input pattern.

Gradient rules alter the weights of a network 
during each pattern presentation by employing 
gradient information with the objective of 
reducing the mean squared error (usually averaged 
over all training patterns).



Learning Objective for TLNsLearning Objective for TLNs
Augmented Input and Weight 
vectors

Objective: To design the 
weights of a TLN to correctly 
classify a given set of patterns. 
Assumption: A training set of 
following form is given

Each pattern Xk is tagged to 
one of two classes C0 or C1denoted by the desired output 
dk being 0 or 1 respectively.
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Learning Objective for Learning Objective for TLNsTLNs
(contd.)(contd.)

Two classes identified by two possible signal states of the 
TLN

C0 by a signal S(yk) = 0, C1 by a signal S(yk) = 1.
Given two sets of vectors X0 andX1 belonging to classes C0
and C1 respectively the learning procedure searches a solution 
weight vector WS that correctly classifies the vectors into 
their respective classes. 
Context: TLNs

Find a weight vectorWS such that for all Xk � X1, S(yk) = 1; 
and for all Xk � X0, S(yk) = 0.
Positive inner products translate to a +1 signal and negative 
inner products to a 0 signal
Translates to saying that for all Xk � X1, Xk

TWS > 0; and for 
all Xk � X0, Xk

TWS < 0.



Pattern SpacePattern Space
Points that satisfy XTWS = 0
define a separating hyperplane in 
pattern space.
Two dimensional case:

Pattern space points on one side 
of this hyperplane (with an 
orientation indicated by the 
arrow) yield positive inner 
products with WS and thus 
generate a +1 neuron signal. 
Pattern space points on the other 
side of the hyperplane generate a 
negative inner product with WS
and consequently a neuron signal 
equal to 0. 

Points in C0 and C1 are thus 
correctly classified by such a 
placement of the hyperplane.

Activation



A Different View: A Different View: Weight SpaceWeight Space
Weight vector is a variable 
vector. 
WTXk = 0 represents a 
hyperplane in weight space
Always passes through the 
origin since W = 0 is a trivial 
solution of WTXk = 0. 
Called the pattern hyperplane
of pattern Xk. 
Locus of all pointsW such 
thatWTXk = 0. 
Divides the weight space into 
two parts: one which generates 
a positive inner product WTXk > 
0, and the other a negative 
inner product WTXk<0. 



Identifying a SIdentifying a Solution Region olution Region fromfrom
Orientated Pattern Orientated Pattern HyperplanesHyperplanes

For each pattern Xk in 
pattern space there is a 
corresponding hyperplane
in weight space. 
For every point in weight 
space there is a 
corresponding hyperplane
in pattern space.
A solution region in 
weight space with four 
pattern hyperplanes

χ1 = {X1,X2}
χ0 = {X3,X4}

W2

X3 X2

X1

X4

W1

Solution region



Requirements of the Learning Requirements of the Learning 
ProcedureProcedure

Linear separability guarantees the existence of a solution 
region. 
Points to be kept in mind in the design of an automated 
weight update procedure :

It must consider each pattern in turn to assess the 
correctness of the present classification.
It must subsequently adjust the weight vector to 
eliminate a classification error, if any.
Since the set of all solution vectors forms a convex cone, 
the weight update procedure should terminate as soon as 
it penetrates the boundary of this cone (solution region).



Design in Weight SpaceDesign in Weight Space
Assume: Xk � X1 and Wk

TXk as 
erroneously non-positive. 
For correct classification, 
shift the weight vector to 
some position Wk+1 where the 
inner product is positive. 
The smallest perturbation in 
Wk that produces the desired 
change is, the perpendicular 
distance from Wk onto the 
pattern hyperplane.
In weight space, the direction 
perpendicular to the pattern 
hyperplane is none other than 
that of Xk itself.

Wk+1

Wk

Wk
T Xk>0

WT Xk<0

Xk



Simple Weight Change Rule:Simple Weight Change Rule:
Perceptron Learning LawPerceptron Learning Law

If Xk � X1 and Wk
TXk < 0 add a fraction of the 

pattern to the weight Wk if one wishes the inner 
product Wk

TXk to increase. 
Alternatively, if Xk � X0, and Wk

TXk is erroneously 
non-negative we will subtract a fraction of the 
pattern from the weight Wk in order to reduce this 
inner product.



Weight Space TrajectoryWeight Space Trajectory
The weight space 
trajectory 
corresponding to the 
sequential presentation 
of four patterns with 
pattern hyperplanes as 
indicated:

χ1 = {X1,X2} and         
χ0 = {X3,X4}

X3 X2

X1

X4

W1

Solution region

W2



Linear ContainmentLinear Containment
Consider the set X0’ in which each element X0 is 
negated.
Given a weight vectorWk, for any Xk � X1 � X0’,
Xk

T Wk > 0 implies correct classification and 
Xk

TWk < 0 implies incorrect classification. 
X‘ = X1 � X0’ is called the adjusted training set. 
Assumption of linear separability guarantees the 
existence of a solution weight vector WS, such 
that Xk

TWS > 0 � Xk � X
We say X’ is a linearly contained set.



Recast of Perceptron Learning with Recast of Perceptron Learning with 
Linearly Contained DataLinearly Contained Data

Since Xk � X’, a misclassification of Xk will add ηkXk to 
Wk.
ForXk � X0‘, Xk actually represents the negative of the 
original vector. 
Therefore addition of   ηkXk to Wk actually amounts to 
subtraction of the original vector from Wk.



Perceptron Algorithm:Perceptron Algorithm:
Operational SummaryOperational Summary



Perceptron Convergence TheoremPerceptron Convergence Theorem
Given: A linearly contained training set X’ and 
any initial weight vectorW1. 
Let SW be the weight vector sequence 
generated in response to presentation of a 
training sequence SX upon application of 
Perceptron learning law. Then for some finite 
index k0 we have: Wk0 = Wk0+1 = Wk0+2 = � � � = 
WS as a solution vector.
See the text for detailed proofs.



HandHand--worked Exampleworked Example
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Classroom ExerciseClassroom Exercise



Classroom ExerciseClassroom Exercise



MATLAB SimulationMATLAB Simulation
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Perceptron Learning Algorithm: Perceptron Learning Algorithm: 
MATLAB CodeMATLAB Code
p = [1 0 0

1 0 1
1 1 0
1 1 1];

d =[0 0 0 1];
w =[0 0 0];
eta =1;
update =1; 
while update==1

for i=1:4
y =p(i,:)*w’; 
if y >=0 & d(i) ==0 

w =w - eta*p(i,:);
up(i) =1;

elseif y<=0 & d(i) == 1
w =w + eta*p(i,:);
up(i) =1; 

else
up(i)=0;

end
end
number_of_updates =up * up’;
if number_of_updates > 0

update =1; 
else 

update =0; 
end

end



Perceptron Learning and NonPerceptron Learning and Non--
separable Setsseparable Sets

Theorem:
Given a finite set of training patterns X, 
there exists a number M such that if we run 
the Perceptron learning algorithm beginning 
with any initial set of weights,W1, then any 
weight vector Wk produced in the course of 
the algorithm will satisfyWk ≤ W1 +M



Two CorollariesTwo Corollaries
If, in a finite set of training patterns X, each 
pattern Xk has integer (or rational) components xi

k, 
then the Perceptron learning algorithm will visit a 
finite set of distinct weight vectors Wk.
For a finite set of training patterns X, with 
individual patterns Xk having integer (or rational) 
components xi

k the Perceptron learning algorithm 
will, in finite time, produce a weight vector that 
correctly classifies all training patterns iff X is 
linearly separable, or leave and re-visit a specific 
weight vector iff X is linearly non-separable.



Handling Linearly NonHandling Linearly Non--separable separable 
Sets: The Sets: The Pocket AlgorithmPocket Algorithm

Philosophy: Incorporate positive reinforcement in a way 
to reward weights that yield a low error solution. 
Pocket algorithm works by remembering the weight 
vector that yields the largest number of correct 
classifications on a consecutive run. 
This weight vector is kept in the “pocket”, and we 
denote it as Wpocket . 
While updating the weights in accordance with 
Perceptron learning, if a weight vector is discovered 
that has a longer run of consecutively correct 
classifications than the one in the pocket, it replaces 
the weight vector in the pocket.



Pocket Algorithm:Pocket Algorithm:
Operational SummaryOperational Summary



Pocket Convergence TheoremPocket Convergence Theorem
Given a finite set of training examples, X, and a 
probabilityp < 1, there exists an integer k0 such 
that after any k > k0 iterations of the pocket 
algorithm, the probability that the pocket weight 
vectorWpocket is optimal exceeds p.



Linear Neurons and Linear ErrorLinear Neurons and Linear Error
Consider a training set of the form T = {Xk, dk}, 
Xk � Rn+1, dk � R. 
To allow the desired output to vary smoothly or 
continuously over some interval consider a  
linear signal function: sk = yk = Xk

TWk

The linear error ek due to a presented training 
pair (Xk, dk), is the difference between the 
desired output dk andthe neuronal signal sk:     
ek = dk − sk = dk − Xk

TWk



Operational Details of Operational Details of αα––LMSLMS
α–LMS error correction 
is proportional to the 
error itself
Each iteration reduces 
the error by a factor of 
η. 
η controls the stability 
and speed of 
convergence. 
Stability ensured           
if 0 < η < 2.
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αα––LMS Works with Normalized LMS Works with Normalized 
Training PatternsTraining Patterns
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αα––LMS: Operational SummaryLMS: Operational Summary



MATLAB Simulation ExampleMATLAB Simulation Example
Synthetic data set shown 
in the figure  is generated 
by artificially scattering 
points around a straight 
line: y = 0.5x + 0.333 and 
generate a scatter of 200 
points in a ±0.1 interval in 
the y direction.
This is achieved by first 
generating a random 
scatter in the interval 
[0,1]. 
Then stretching it to the 
interval [−1, 1], and finally 
scaling it to ±0.1
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Computer Simulation of Computer Simulation of αα--LMS LMS 
AlgorithmAlgorithm
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MATLAB Program for MATLAB Program for αα--LMS LMS 
LearningLearning
max_points =200; % Assume 200 data points
x =linspace(0,2.5,max_points); % Generate the x linspace
y =.5*x + 0.333; % Define a straight line
scatter =rand(1,max_points); % Generate scatter vector
ep =.1; % Compress scatter to 0.1
d =((2*scatter-1)*ep) + y; % Set up desired values
eta =.01; % Set learning rate
w =3*(2*rand(1,2) - 1); % Randomize weights



MATLAB Program for MATLAB Program for αα--LMS LMS 
LearningLearning
for loop =1:50 % Train for 50 epochs

randindex =randperm(200); % Randomize order
for j =1: max_points % For each data point

i =randindex(j); % Get the index
s(i) =w(1) + w(2)*x(i); % Compute signal value
err(i) =d(i) - s(i); % Compute pattern error
w(1) =w(1) + eta*err(i)/(1+x(i)ˆ2);% Change the weights

w(2) =w(2) + eta*err(i)*x(i)/(1+x(i)ˆ2);
end

end



A Stochastic SettingA Stochastic Setting
Assumption that the training set T is well defined in 
advance is incorrect when the setting is stochastic. 
In such a situation, instead of deterministic 
patterns, we have a sequence of samples {(Xk, dk)}
assumed to be drawn from a statistically stationary
population or process. 
For adjustment of the neuron weights in response to 
some pattern-dependent error measure, the error 
computation has to be based on the expectation of 
the error over the ensemble.



Definition of Mean Squared Error Definition of Mean Squared Error 
(MSE)(MSE)

We introduce the square error on a pattern Xk as

Assumption: The weights are held fixed at Wk while 
computing the expectation.
The mean-squared error can now be computed by taking 
the expectation on both sides of (2):
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Our problem…Our problem…
To find optimal weight vector that 
minimizes the mean-square error.



Cross CorrelationsCross Correlations
For convenience of expression we define the 
pattern vector P as the cross-correlation 
between the desired scalar output, dk, and the 
input vector, Xk

and the input correlation matrix, R, as
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Cross Correlations (contd.)Cross Correlations (contd.)
Using Eqns. (4)-(5), we rewrite the MSE 
expression of Eqn. (3) succinctly as

Note that since the MSE is a quadratic 
function of the weights it represents a 
bowl shaped surface in the (n+1) x 1
weight—MSE cross space.
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Finding the Minimum Error Finding the Minimum Error 
First compute the gradient by straightforward 
differentiation which is a linear function of weights

To find the optimal set of weights,    , simply set            
which yields 
This system of equations (8) is called the Weiner-Hopf 
system and its solution is the Weiner solution or the
Weiner filter 

is the point in weight space that represents the minimum 
mean-square error 
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Computing the Optimal FilterComputing the Optimal Filter
First compute       and    . Substituting from Eqn. (9) 
into Eqn. (6) yields:

For the treatment of weight update procedures we 
reformulate the expression for mean-square error in 
terms of the deviation                , of the weight vector 
from the Weiner solution.
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Computing RComputing R
Substituting                   into Eqn. (6)

Note that since the mean-square error     is non-negative, we 
must have              . This implies that R is positive semi-
definite. Usually however, R is positive definite.
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DiagonalizationDiagonalization of Rof R
Assume that R has distinct eigenvalues . Then we 
can construct a matrix Q whose columns are 
corresponding eigenvectors     of R.

R can be diagonalized using an orthogonal similarity 
transformation as follows. Having constructed Q, 
and knowing that:

iλ

iη

( ) (17)                                           n10 ηηη L=Q

( ) (18)                         

          0
            

0       0
0    0   

      

n

1

0

n10

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

λ

λ
λ

ηηη

L

MOM

L

L

LRQWe have

{ } (19)                                ,,,, 210
1

ndiagDRQQ λλλλ L==−



Some ObservationsSome Observations
It is usual to choose the eigenvectors of R to be 
orthonormal and           .
Then
From Eqn. (15) we know that the shape of     is a 
bowl-shaped paraboloid with a minimum at the 
Weiner solution (V=0, the origin of V-space).
Slices of    parallel to the W space yield elliptic 
constant error contours which define the weights in 
weight space that the specific value of the square-
error (say     ) at which the slice is made: 
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Eigenvectors of REigenvectors of R
Also note from Eqn. (15) that we can compute the MSE 
gradient in V-space as, 

which defines a family of vectors in V-space.

Exactly n+1 of these pass through the origin of V-space 
and these are the principal axes of the ellipse.

However, vectors passing through the origin must take the
. Therefore, for the principal axes  

Clearly,     is an eigenvector of R.        
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MATLAB Simulation ExampleMATLAB Simulation Example
( ) ( )( )( )( ) (23)        8.17.09.113 ++−−= xxxxxxfWe use a data 

scatter of 100 
sample points that 
describes a fifth 
order function
The points are 
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MATLAB Simulation:MATLAB Simulation:
Computing the MSE SurfaceComputing the MSE Surface

First calculate the correlation matrix R, the cross-
correlation P,         , and the Weiner solution. These are 
straightforward to compute since the data set is 
deterministic.
For the pattern set under consideration,                     and the 
Weiner solution can be computed to be
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MSE Surface in the Vicinity of MSE Surface in the Vicinity of 
Weiner SolutionWeiner Solution



Steepest Descent Search with Exact Steepest Descent Search with Exact 
Gradient InformationGradient Information

Steepest descent search 
uses exact gradient 
information available 
from the mean-square 
error surface to direct 
the search in weight 
space.
The figure shows a 
projection of the 
square-error function on 
the           plane.k

iw−ε



Steepest Descent Procedure Steepest Descent Procedure 
SummarySummary

Provide an appropriate weight increment to     to push the 
error towards the minimum which occurs at    .
Perturb the weight in a direction that depends on which 
side of the optimal weight the current weight value     
lies.
If the weight component     lies to the left of   , say at     ,
where the error gradient is negative (as indicated by the 
tangent) we need to increase    . 
If     is on the right of    , say at      where the error 
gradient is positive, we need to decrease    .
This rule is summarized in the following statement:
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Weight Update ProcedureWeight Update Procedure
It follows logically therefore, that the weight component should be 
updated in proportion with the negative of the gradient:

Vectorially we may write

where we now re-introduced the iteration time dependence into the 
weight components:

Equation (28) is the steepest descent update procedure. Note that 
steepest descent uses exact gradient information at each step to
decide weight changes.
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Convergence of Steepest Descent Convergence of Steepest Descent -- 11
Question: What can one say about the stability of the 
algorithm? Does it converge for all values of     ?
To answer this question consider the following series of 
subtitutions and transformations. From Eqns. (28) and (21)

Transforming Eqn. (33) into V-space (the principal coordinate 
system) by substitution of            for        yields:
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Steepest Descent Convergence Steepest Descent Convergence -- 22
Rotation to the principal axes of the elliptic contours can be 
effected by using              :

where D is the diagonal eigenvalue matrix. Recursive application of
Eqn. (37) yields:

It follows from this that for stability and convergence of the 
algorithm:
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Steepest Descent Convergence Steepest Descent Convergence -- 33
This requires that

being the largest eigenvalue of R.

If this condition is satisfied then we have

Steepest descent is guaranteed to converge to the Weiner solution as long as 
the learning rate is maintained within the limits defined by Eqn. (41).
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Computer Simulation ExampleComputer Simulation Example
This simulation example employs the fifth order function data 
scatter with the data shifted in the y direction by 0.5. 
Consequently, the values of R,P and the Weiner solution are 
respectively:

Exact gradient information is available since the correlation matrix 
R and the cross-correlation matrix P are known.
The weights are updated using the equation:
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MATLAB Simulation ExampleMATLAB Simulation Example
eta = .01;                                   % Set learning rate
R=zeros(2,2);                            % Initialize correlation matrix
X = [ones(1,max_points);x];       % Augment input vectors

P = (sum([d.*X(1,:); d.*X(2,:)],2))/max_points;  % Cross-correlations
D = (sum(d.^2))/max_points; %squares;           % target expectations

for k =1:max_points
R = R + X(:,k)*X(:,k)';             % Compute R

end

R = R/max_points;
weiner=inv(R)*P;                      % Compute the Weiner solution
errormin = D - P'*inv(R)*P;      % Find the minimum error



MATLAB Simulation Example (contd.)MATLAB Simulation Example (contd.)
shift1 = linspace(-12,12, 21);              % Generate a weight space matrix
shift2 = linspace(-9,9, 21);
for i = 1:21                                         % Compute a weight matrix about 

shiftwts(1,i) =  weiner(1)+shift1(i);  % Weiner solution
shiftwts(2,i) =  weiner(2)+shift2(i);

end

for i=1:21                                          % Compute the error matrix
for j = 1:21                                      % to plot the error contours
error(i,j) = sum((d - (shiftwts(1,i) + x.*shiftwts(2,j))).^2);

end
end
error = error/max_points;

figure; hold on;                                % Plot the error contours
plot(weiner(1),weiner(2),'*k')          % Labelling statements no shown



MATLAB Simulation Example (Contd.)MATLAB Simulation Example (Contd.)
w = 10*(2*rand(2,1)-1);                          % Randomize weights
w0 = w;                                                  % Remember the initial weights

for loop = 1:500                                     % Perform descent for 500 iters
w = w + eta*(-2*(R*w-P));
wts1(loop)=w(1); wts2(loop)=w(2);

End

% Set up weights for plotting
wts1=[w0(1) wts1]; wts2=[w0(2) wts2]; 

plot(wts1,wts2,'r')                                % Plot the weight trajectory



Smooth Trajectory towards the Smooth Trajectory towards the 
Weiner SolutionWeiner Solution

Steepest 
descent uses  
exact gradient 
information to 
search the 
Weiner 
solution in 
weight space.
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µµ--LMS: Approximate Gradient LMS: Approximate Gradient 
DescentDescent

The problem with steepest descent is that true gradient 
information is only available in situations where the data set 
is completely specified in advance.

It is then possible to compute R and P exactly, and thus the 
true gradient at iteration 

However, when the data set comprises a random stream of 
patterns (drawn from a stationary distribution), R and P 
cannot be computed accurately. To find a correct 
approximation one might have to examine the data stream for 
a reasonably large period of time and keep averaging out.

How long should we examine the stream to get reliable 
estimates of R and P ?

PRWk k −=∇ε:



DefinitionDefinition
The µ-LMS algorithm is convergent in 
the mean if the average of the weight 
vector Wk approaches the optimal 
solution Wopt as the number of iterations 
k, approaches infinity: 

E[Wk] → Wopt as k → ∞



µµ--LMS employs LMS employs εεk k for for εε=Ε[=Ε[εεkk]]
The gradient computation modifies to:

where                   , and               since we are dealing with linear 
neurons. Note therefore that the recursive update equation then 
becomes

What value does the long term average of         converge to? Taking 
the Expectation of both sides of Eqn. (47):  
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Some ObservationsSome Observations
Since the long term average of       approaches     , we can 
safely       use as an unbiased estimate. That’s what makes     
µ-LMS work!

Since       approaches      in the long run, one could keep 
collecting        for a sufficiently large number of iterations 
(while keeping the weights fixed), and then make a weight 
change collectively for all those iterations together.

If the data set is finite (deterministic), then one can 
compute       accurately by first collecting the different      
gradients over all training patterns     for the same set of 
weights. This accurate measure of the gradient could then be 
used to change the weights. In this situation µ-LMS is 
identical to the steepest descent algorithm.
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Observations Contd.Observations Contd.
Even if the data set is deterministic, we still use        to update 
the weights. After all if the data set becomes large, collection
of all the gradients becomes expensive in terms of storage. 
Much easier to just go ahead and use           

Be clear about the approximation made: we are estimating the 
true gradient (which should be computed from         ) by a 
gradient computed from the instantaneous sample error     . 
Although this may seem to be a rather drastic approximation, it 
works.

In the deterministic case we can justify this as follows: if the 
learning rate     , is kept small, the weight change in each 
iteration will be small    and consequently the weight vector W 
will remain “somewhat constant” over Q iterations where Q is 
the number of patterns in the training set. 
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Observations Contd.Observations Contd.
Of course this is provided that Q is a small number! To see this, 
observe the total weight change       ,  over Q iterations from the       
iteration:

Where       denotes the mean-square error. Thus the weight updates 
follow the true gradient on average.   
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Observations Contd.Observations Contd.
Observe that steepest descent search is guaranteed to search 
the Weiner solution provided the learning rate condition (41) is
satisfied.

Now since        is an unbiased estimate of       one can expect 
that µ-LMS too will search out the Weiner solution. Indeed it 
does—but not smoothly. This is to be expected since we are only 
using an estimate of the true gradient for immediate use.

Although α-LMS and µ- LMS are similar algorithms, α-LMS 
works on the normalizing training set. What this simply means is
that α-LMS also uses gradient information, and will eventually 
search out the Weiner solution-of the normalized training set. 
However, in one case the two algorithms are identical: the case 
when input vectors are bipolar. (Why?)   
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µµ--LMS Algorithm:LMS Algorithm:
Convergence in the Mean (1)Convergence in the Mean (1)

Definition 0.1  The    -LMS algorithm is convergent in the mean
if the average of the weight vector     approaches the optimal 
solution     as the number of iterations k, approaches infinity:

Definition 0.2 The    -LMS algorithm is convergent in the mean 
square if the average of the squared error     approaches a 
constant as the Number of iterations, k, approaches infinity: 

Convergence in the mean square is a stronger criterion than 
convergence in the mean. In this section we discuss convergence 
in the mean and merely state the result for convergence in the 
mean square. 
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µµ--LMS Algorithm:LMS Algorithm:
Convergence in the Mean (2)Convergence in the Mean (2)

Consider the µ-LMS weight update equation:

Taking the expectation of both sides of Eqn. (63) yields,

Where P and R are as already defined
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µµ--LMS Algorithm:LMS Algorithm:
Convergence in the Mean (3)Convergence in the Mean (3)

Appropriate substitution yields:

Pre-multiplication throughout by      results in:

And subtraction of        from both sides gives:  

We will re-write Eqn. (69) in familiar terms:
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µµ--LMS Algorithm:LMS Algorithm:
Convergence in the Mean (4)Convergence in the Mean (4)
And

Where                          and                  . Eqn. (71) represents a set of n+1
Decoupled difference equations : 

Recursive application of Eqn. (72) yields,

To ensure convergence in the mean,               as             since this 
condition requires that the deviation of           from      should tend to 0.
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µµ--LMS Algorithm:LMS Algorithm:
Convergence in the Mean (5)Convergence in the Mean (5)

Therefore from Eqn. (73):

If this condition is satisfied for the largest eigenvalue
then it will be satisfied for all other eigenvalues. We 
therefore conclude that if

then the µ-LMS algorithm is convergent in the mean.
Further, since tr = (where tr is the trace 
of R) convergence is assured if 
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Random Walk towards the Weiner Random Walk towards the Weiner 
SolutionSolution

Assume the 
familiar fifth 
order function
µ-LMS uses a 
local estimate of 
gradient to 
search the 
Weiner solution 
in weight space.
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Computer Simulation ExampleComputer Simulation Example
µ-LMS learning assumes that the data stream is stochastic 
(with stationary properties).

To simulate this data stream generate data points on the fly---
within the weight update loop. 

The correlation and cross-correlation matrices R and P are  
computed by averaging over a sufficiently large stream of data 
points.

The trajectory makes the expected random walk towards the 
Weiner solution starting out from                               .
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MATLAB Code SegmentMATLAB Code Segment
for loop = 1:200
x = (2*rand-1)*2;
X = [1;x];
y = 3.*x.^5 - 1.2.*x.^4 - 12.27.*x.^3 + 3.288.*x.^2 

+ 7.182.*x;

scatter = (2*rand-1)*eps;
d = y + scatter;
w = w + 2*eta*(d -X'*w)*X;
wts1(loop)=w(1);
wts2(loop)=w(2);

end



MATLAB Code NotesMATLAB Code Notes
The rest of the program is very similar to the code for steepest
descent search. 

The source function for the steepest descent simulation example 
was shifted vertically by 0.5 (resulting in a change in the 
orientation of the error contours). 

Notice how the data points are now generated on-the-fly to 
simulate the stochastic stream of training data. 

Since the synthetic source function and the scatter generation 
functions are fixed, the stream has stationary stochastic 
properties.

The values of R and P were pre-computed by averaging over a 
stream of 10,000 points.



Application of LMS Tapped Delay Application of LMS Tapped Delay 
Line FiltersLine Filters

Sampled input is delayed through a series of delay elements. 
These n signal samples (including the current one) are input 
to the adaptive linear combiner (ALC) 
Output is the inner product yk = Xk

TWk, where X = (xk, xk−1, . . 
. , xk−n+1)T andW = (w1, . . . ,wn)T .
LMS procedure employed to adjust the weights so that the 
output matches the desired response.



Adaptive Noise CancellationAdaptive Noise Cancellation



Adaptive Noise Cancellation:Adaptive Noise Cancellation:
Removal Of Noise Removal Of Noise nn00 From Signal From Signal ss

Goal: To pass the signal and remove the noise. 
This approach can be used only if a reference 
signal is available that contains a noise 
component n1 that is correlated with the noise 
n0. 
The adaptive noise canceller subtracts the 
filtered reference signal from the noisy input, 
thereby making the output of the canceller an 
error signal.
A simple argument shows that the filter can 
indeed adapt to cancel the noise rather easily. 



Adaptive Noise Cancellation: Adaptive Noise Cancellation: 
ProcedureProcedure

If we assume that s, n0, n1, y are statistically 
independent and stationary with zero means, 
the analysis becomes tractable. 
For, є = s + n0 − y which on squaring yields є2 = 
s2 + (n0 − y)2 + 2s(n0 − y)
If we take expectations on both sides of above 
equation and assume that s is uncorrelated with 
n0 and y, we have E[є2] = E[s2] + E[(n0 − y)2] + 
2E[s(n0 − y)] 
However, the last term tends to be zero due to 
the uncorrelated nature of s and( n0 − y), and 
so E[є2] = E[s2] + E[(n0 − y)2]



Noise cancellation in fetal ECGNoise cancellation in fetal ECG
Recordings from the 
fetal ECG experiment 
at a bandwidth 3–35 
Hz, sampling rate 256 
Hz. 

(a) Reference input. 
(b) Primary input. 
(c) Noise cancelled 
fetal ECG with 
interfering maternal 
ECG signal removed



Noise cancellation in fetal ECGNoise cancellation in fetal ECG
Recordings from the 
fetal ECG experiment 
at a bandwidth of 0.3–
75 Hz, sampling rate 
512 Hz.

(a) Reference input. 
(b) Primary input. 
(c) Noise canceller 
output—fetal ECG 
with interfering 
maternal ECG signal 
removed


