
Copyright © 2004
Tata McGraw Hill Publishing Co.

Neural Networks: A Classroom Approach
Satish Kumar

Department of Physics & Computer Science
Dayalbagh Educational Institute (Deemed University)

Chapter 5Chapter 5

Supervised Learning Supervised Learning
I: I:
PerceptronsPerceptrons and LMSand LMS

Two Fundamental Learning ParadigmsTwo Fundamental Learning Paradigms

Non-associative
an organism acquires the properties of a
single repetitive stimulus.

Associative
an organism acquires knowledge about the
relationship of either one stimulus to
another, or one stimulus to the organism’s
own behavioural response to that stimulus.

Examples of Associative LearningExamples of Associative Learning
Classical conditioning

Association of an unconditioned stimulus (US) with a conditioned
stimulus (CS).
CS’s such as a flash of light or a sound tone produce weak responses.
US’s such as food or a shock to the leg produce a strong response.
Repeated presentation of the CS followed by the US, the CS begins
to evoke the response of the US.
Example: If a flash of light is always followed by serving of meat to a
dog, after a number of learning trials the light itself begins to
produce salivation.

Operant conditioning
Formation of a predictive relationship between a stimulus and a
response.
Example: Place a hungry rat in a cage which has a lever on one of its
walls. Measure the spontaneous rate at which the rat presses the
lever by virtue of its random movements around the cage. If the rat
is promptly presented with food when the lever is pressed, the
spontaneous rate of lever pressing increases!

Reflexive and Declarative LearningReflexive and Declarative Learning
Reflexive learning

repetitive learning is involved and recall does not
involve any awareness or conscious evaluation.

Declarative learning
established by a single trial or experience and
involves conscious reflection and evaluation for its
recall.

Constant repitition of declarative knowledge
often manifest itself in reflexive form.

Important Aspects of Human Important Aspects of Human
MemoryMemory

Two distinct stages:
short-term memory
(STM)
long-term memory (LTM)

Inputs to the brain are
processed into STMs which
last at the most for a few
minutes.
Information is downloaded
into LTMs for more
permanent storage: days,
months, and years.
Capacity of LTMs is very
large.

Memory
recalled

SHORT TERM MEMORY
(STM)

LONG TERM MEMORY
(LTM)

Download

Input
stimulus

Recall
Process

Recall process of these memories
is distinct from the memories
themselves.

Important Aspects of Human Important Aspects of Human
MemoryMemory

Recall of recent memories is more easily disrupted than that of
older memories.
Memories are dynamic and undergo continual change and with time
all memories fade.
STM results in

physical changes in sensory receptors.
simultaneous and cohesive reverberation of neuron circuits.

Long-term memory involves
plastic changes in the brain which take the form of
strengthening or weakening of existing synapses
the formation of new synapses.

Learning mechanism distributes the memory over different areas
Makes robust to damage
Permits the brain to work easily from partially corrupted
information.

Reflexive and declarative memories may actually involve different
neuronal circuits.

From Synapses to From Synapses to BehaviourBehaviour: The : The
Case of Case of AplysiaAplysia

Aplysia has a respiratory
gill that is housedin the
mantle cavity (which is a
respiratory chamber
covered by the mantle
shelf) on the dorsal side of
the mollusc.
The mantle forms a spout
at the dorsal end which
usually protrudes between
the parapodia which are
wing-like extensions of the
body wall.

GillGill––Siphon Withdrawal (GSW) Siphon Withdrawal (GSW)
ReflexReflex

When a tactile stimulus is applied to the
siphon or the mantle shelf, two reflexes
are initiated:

the siphon contracts behind the parapodia
the gill is withdrawn into the mantle cavity.

The gill–siphon withdrawal (GSW) reflex
is an example of an innate defensive
reflex.

Cellular Mechanism of GSW Cellular Mechanism of GSW
HabituationHabituation

Siphon
Skin

SN GillSN MN

IN

MN: Mentor Neuron
IN: Interneuron
SN: Sensory Neuron

Two dozen sensory neurons are embedded in the siphon
skin
One of such sensory neurons is illustrated in the above
figure
A sensory neuron terminates on a cluster of six motor
neurons that activate the gill. Sensory neurons also excite
motor neuron via an inter-neuronal pathway.

Habituation CascadeHabituation Cascade
Siphon

Skin
Excitatory synaptic

potentials in interneuron
and motor neuron cells

Stimulus
SN

These potentials undergo
spatio-temporal summation to
generate strong discharges
from motor neurons causing
the gill to withrdraw briskly

Repeated
presentation
of stimulus

Potentials produced by
interneuron and motor
neuron cells gradually

becomes weaker

Strength of gill
withdrawal reflex

is reduced

Reduced transmitter release
from the presynaptic terminal

Cause for decrease in
post-synaptic potential

Inactivation of a special
type of Ca++ channel in
pre-synaptic terminal

With each action potential a lesser
amount of calcium flows into the

the pre-synaptic terminal.

Siphon
Skin

Cause for reduced
transmitter release

SN

Cellular Mechanism of GSW Cellular Mechanism of GSW
SensitizationSensitization

Sensitization is brought about
by a sudden enhancement in
synaptic transmission.
Example:

Repeated presentations of tactile
stimuli to the siphon leads to
habituation
The delivery of a brief electrical
stimulus to the tail rapidly
facilitates excitatory
postsynaptic potentials produced
in motor neurons on sensory
stimulation.

The same set of synapses that
are depressed by habituation,
are enhanced by sensitization.
The sensitizing stimulus
activates a group of facilitating
inter neurons that synapse axo-
axonically on the terminals of
sensory neurons.

Siphon
Skin

Tail FN

SN MN

IN

Gill

MN: Motor Neuron
FN: Facilitatory Neuron
SN: Sensor Neuron
IN: Interneuron

Sensitization Cascade Sensitization Cascade Involves Involves
PresynapticPresynaptic FacilitationFacilitation

Activation of specialized protein
receptors in the SN synaptic terminal

Serotonin
neurotransmitters
released from FNs

Facilitation of adenylyl cyclase
increases the concentration

of cyclic adenosine monophospate (cAMP)

Activation of cAMP dependent protein
kinase phosphorylates K+ channel protein

Implies that the action potential in
the synaptic terminal will get prolonged

which allows the calcium channels
to be activated for a longer time.

Leads to increased concentration
of calcium in the terminal and consequently

a greater amount of transmitter release

Reduces the component of the K+ current
that repolarizes the action potential

Learning AlgorithmsLearning Algorithms
Define an architecture-dependent procedure to encode
pattern information into weights
Learning proceeds by modifying connection strengths.
Learning is data driven:

A set of input–output patterns derived from a (possibly
unknown) probability distribution.

Output pattern might specify a desired system response for
a given input pattern
Learning involves approximating the unknown function as
described by the given data.

Alternatively, the data might comprise patterns that
naturally cluster into some number of unknown classes

Learning problem involves generating a suitable classification
of the samples.

Supervised LearningSupervised Learning
Data comprises a set of
discrete samples drawn
from the pattern space
where each sample relates
an input vector Xk � Rn to an
output vector Dk � Rp.

The set of samples
describe the behaviour of
an unknown function
f : Rn → Rp which is to be
characterized. -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-20

-15

-10

-5

0

5

10

15

20

x

f(x
)

3 x5-1.2 x4-12.27 x3+3.288 x2+7.182 x

(){ }Q
kkk DXT 1, ==

An example function described
by a set of noisy data points

The Supervised Learning ProcedureThe Supervised Learning Procedure
Error information fed back for network adaptation

ErrorSkXk

DxNeural Network

We want the system to generate an output Dk in
response to an input Xk, and we say that the system has
learnt the underlying map if a stimulus Xk’ close to Xk
elicits a response Sk’ which is sufficiently close to Dk.
The result is a continuous function estimate.

Unsupervised LearningUnsupervised Learning
Unsupervised learning provides the system with an input
Xk, and allow it to self-organize its weights to generate
internal prototypes of sample vectors.
Note: There is no teaching input involved here.
The system attempts to represent the entire data set
by employing a small number of prototypical vectors—
enough to allow the system to retain a desired level of
discrimination between samples.
As new samples continuously buffer the system, the
prototypes will be in a state of constant flux.
This kind of learning is often called adaptive vector
quantization

Clustering and ClassificationClustering and Classification
Given a set of data samples {Xi}, Xi � Rn, is it possible to identify
well defined “clusters”, where
each cluster defines a class of
vectors which are similar in
some broad sense?
Clusters help establish a
classification structure within a
data set that has no categories
defined in advance.
Classes are derived from
clusters by appropriate
labelling.
The goal of pattern
classification is to assign an
input pattern to one of a finite
number of classes.
Quantization vectors are called
codebook vectors.

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-0.5

0

0.5

1

1.5

2

2.5

Cluster centroids

Cluster 1

Cluster 2

Characteristics of Supervised and Characteristics of Supervised and
Unsupervised LearningUnsupervised Learning

General Philosophy of Learning: General Philosophy of Learning:
PPrinciple of Minimal Disturbance rinciple of Minimal Disturbance

Adapt to reduce the output error for the
current training pattern, with minimal
disturbance to responses already learned.

Error Correction and Gradient Error Correction and Gradient
Descent RulesDescent Rules

Error correction rules alter the weights of a
network using a linear error measure to reduce the
error in the output generated in response to the
present input pattern.

Gradient rules alter the weights of a network
during each pattern presentation by employing
gradient information with the objective of
reducing the mean squared error (usually averaged
over all training patterns).

Learning Objective for TLNsLearning Objective for TLNs
Augmented Input and Weight
vectors

Objective: To design the
weights of a TLN to correctly
classify a given set of patterns.
Assumption: A training set of
following form is given

Each pattern Xk is tagged to
one of two classes C0 or C1denoted by the desired output
dk being 0 or 1 respectively.

+1

WOX1

X2

Xn

W1

W2

Wn

Σ

…

()
() 1

10

1
10

,,,

,,,
+

+

∈=

∈=
n

k
Tk

n
kk

k

n
k

Tk
n

k
k

RWwwwW

RXxxxX

K

K

(){ } { }1,0 , , 1
1 ∈∈= +
= k

n
K

Q
kkk dRXDXT

S

Learning Objective for Learning Objective for TLNsTLNs
(contd.)(contd.)

Two classes identified by two possible signal states of the
TLN

C0 by a signal S(yk) = 0, C1 by a signal S(yk) = 1.
Given two sets of vectors X0 andX1 belonging to classes C0
and C1 respectively the learning procedure searches a solution
weight vector WS that correctly classifies the vectors into
their respective classes.
Context: TLNs

Find a weight vectorWS such that for all Xk � X1, S(yk) = 1;
and for all Xk � X0, S(yk) = 0.
Positive inner products translate to a +1 signal and negative
inner products to a 0 signal
Translates to saying that for all Xk � X1, Xk

TWS > 0; and for
all Xk � X0, Xk

TWS < 0.

Pattern SpacePattern Space
Points that satisfy XTWS = 0
define a separating hyperplane in
pattern space.
Two dimensional case:

Pattern space points on one side
of this hyperplane (with an
orientation indicated by the
arrow) yield positive inner
products with WS and thus
generate a +1 neuron signal.
Pattern space points on the other
side of the hyperplane generate a
negative inner product with WS
and consequently a neuron signal
equal to 0.

Points in C0 and C1 are thus
correctly classified by such a
placement of the hyperplane.

Activation

A Different View: A Different View: Weight SpaceWeight Space
Weight vector is a variable
vector.
WTXk = 0 represents a
hyperplane in weight space
Always passes through the
origin since W = 0 is a trivial
solution of WTXk = 0.
Called the pattern hyperplane
of pattern Xk.
Locus of all pointsW such
thatWTXk = 0.
Divides the weight space into
two parts: one which generates
a positive inner product WTXk >
0, and the other a negative
inner product WTXk<0.

Identifying a SIdentifying a Solution Region olution Region fromfrom
Orientated Pattern Orientated Pattern HyperplanesHyperplanes

For each pattern Xk in
pattern space there is a
corresponding hyperplane
in weight space.
For every point in weight
space there is a
corresponding hyperplane
in pattern space.
A solution region in
weight space with four
pattern hyperplanes

χ1 = {X1,X2}
χ0 = {X3,X4}

W2

X3 X2

X1

X4

W1

Solution region

Requirements of the Learning Requirements of the Learning
ProcedureProcedure

Linear separability guarantees the existence of a solution
region.
Points to be kept in mind in the design of an automated
weight update procedure :

It must consider each pattern in turn to assess the
correctness of the present classification.
It must subsequently adjust the weight vector to
eliminate a classification error, if any.
Since the set of all solution vectors forms a convex cone,
the weight update procedure should terminate as soon as
it penetrates the boundary of this cone (solution region).

Design in Weight SpaceDesign in Weight Space
Assume: Xk � X1 and Wk

TXk as
erroneously non-positive.
For correct classification,
shift the weight vector to
some position Wk+1 where the
inner product is positive.
The smallest perturbation in
Wk that produces the desired
change is, the perpendicular
distance from Wk onto the
pattern hyperplane.
In weight space, the direction
perpendicular to the pattern
hyperplane is none other than
that of Xk itself.

Wk+1

Wk

Wk
T Xk>0

WT Xk<0

Xk

Simple Weight Change Rule:Simple Weight Change Rule:
Perceptron Learning LawPerceptron Learning Law

If Xk � X1 and Wk
TXk < 0 add a fraction of the

pattern to the weight Wk if one wishes the inner
product Wk

TXk to increase.
Alternatively, if Xk � X0, and Wk

TXk is erroneously
non-negative we will subtract a fraction of the
pattern from the weight Wk in order to reduce this
inner product.

Weight Space TrajectoryWeight Space Trajectory
The weight space
trajectory
corresponding to the
sequential presentation
of four patterns with
pattern hyperplanes as
indicated:

χ1 = {X1,X2} and
χ0 = {X3,X4}

X3 X2

X1

X4

W1

Solution region

W2

Linear ContainmentLinear Containment
Consider the set X0’ in which each element X0 is
negated.
Given a weight vectorWk, for any Xk � X1 � X0’,
Xk

T Wk > 0 implies correct classification and
Xk

TWk < 0 implies incorrect classification.
X‘ = X1 � X0’ is called the adjusted training set.
Assumption of linear separability guarantees the
existence of a solution weight vector WS, such
that Xk

TWS > 0 � Xk � X
We say X’ is a linearly contained set.

Recast of Perceptron Learning with Recast of Perceptron Learning with
Linearly Contained DataLinearly Contained Data

Since Xk � X’, a misclassification of Xk will add ηkXk to
Wk.
ForXk � X0‘, Xk actually represents the negative of the
original vector.
Therefore addition of ηkXk to Wk actually amounts to
subtraction of the original vector from Wk.

Perceptron Algorithm:Perceptron Algorithm:
Operational SummaryOperational Summary

Perceptron Convergence TheoremPerceptron Convergence Theorem
Given: A linearly contained training set X’ and
any initial weight vectorW1.
Let SW be the weight vector sequence
generated in response to presentation of a
training sequence SX upon application of
Perceptron learning law. Then for some finite
index k0 we have: Wk0 = Wk0+1 = Wk0+2 = � � � =
WS as a solution vector.
See the text for detailed proofs.

HandHand--worked Exampleworked Example

+1

W1

W2

X1
WO

S

X2

Binary threshold neuron

Classroom ExerciseClassroom Exercise

Classroom ExerciseClassroom Exercise

MATLAB SimulationMATLAB Simulation

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.5

0

0.5

1

1.5

2

2.5

3

x1

x 2

(0,0) (1,0)

(0,1) (1,1)

(a) Hyperplane movement depicted during Perceptron Learning

 k=5

 k=15

 k=25

 k=35

-4

-3

-2

-1

0

0
0.51

1.52
2.53

0

1

2

3

w0

(b) Weight space trajectories: W0 = (0,0,0), WS =(-4 3 2)

w1

w
2

Perceptron Learning Algorithm: Perceptron Learning Algorithm:
MATLAB CodeMATLAB Code
p = [1 0 0

1 0 1
1 1 0
1 1 1];

d =[0 0 0 1];
w =[0 0 0];
eta =1;
update =1;
while update==1

for i=1:4
y =p(i,:)*w’;
if y >=0 & d(i) ==0

w =w - eta*p(i,:);
up(i) =1;

elseif y<=0 & d(i) == 1
w =w + eta*p(i,:);
up(i) =1;

else
up(i)=0;

end
end
number_of_updates =up * up’;
if number_of_updates > 0

update =1;
else

update =0;
end

end

Perceptron Learning and NonPerceptron Learning and Non--
separable Setsseparable Sets

Theorem:
Given a finite set of training patterns X,
there exists a number M such that if we run
the Perceptron learning algorithm beginning
with any initial set of weights,W1, then any
weight vector Wk produced in the course of
the algorithm will satisfyWk ≤ W1 +M

Two CorollariesTwo Corollaries
If, in a finite set of training patterns X, each
pattern Xk has integer (or rational) components xi

k,
then the Perceptron learning algorithm will visit a
finite set of distinct weight vectors Wk.
For a finite set of training patterns X, with
individual patterns Xk having integer (or rational)
components xi

k the Perceptron learning algorithm
will, in finite time, produce a weight vector that
correctly classifies all training patterns iff X is
linearly separable, or leave and re-visit a specific
weight vector iff X is linearly non-separable.

Handling Linearly NonHandling Linearly Non--separable separable
Sets: The Sets: The Pocket AlgorithmPocket Algorithm

Philosophy: Incorporate positive reinforcement in a way
to reward weights that yield a low error solution.
Pocket algorithm works by remembering the weight
vector that yields the largest number of correct
classifications on a consecutive run.
This weight vector is kept in the “pocket”, and we
denote it as Wpocket .
While updating the weights in accordance with
Perceptron learning, if a weight vector is discovered
that has a longer run of consecutively correct
classifications than the one in the pocket, it replaces
the weight vector in the pocket.

Pocket Algorithm:Pocket Algorithm:
Operational SummaryOperational Summary

Pocket Convergence TheoremPocket Convergence Theorem
Given a finite set of training examples, X, and a
probabilityp < 1, there exists an integer k0 such
that after any k > k0 iterations of the pocket
algorithm, the probability that the pocket weight
vectorWpocket is optimal exceeds p.

Linear Neurons and Linear ErrorLinear Neurons and Linear Error
Consider a training set of the form T = {Xk, dk},
Xk � Rn+1, dk � R.
To allow the desired output to vary smoothly or
continuously over some interval consider a
linear signal function: sk = yk = Xk

TWk

The linear error ek due to a presented training
pair (Xk, dk), is the difference between the
desired output dk andthe neuronal signal sk:
ek = dk − sk = dk − Xk

TWk

Operational Details of Operational Details of αα––LMSLMS
α–LMS error correction
is proportional to the
error itself
Each iteration reduces
the error by a factor of
η.
η controls the stability
and speed of
convergence.
Stability ensured
if 0 < η < 2.

Sk=Xk
TWk

+1

WO
W1

k

W2
k

Wn
k

X1
k

X2
k

Xn
k

…

αα––LMS Works with Normalized LMS Works with Normalized
Training PatternsTraining Patterns

x3

xk

Wk

Wk

Wk+1

x1

x2

αα––LMS: Operational SummaryLMS: Operational Summary

MATLAB Simulation ExampleMATLAB Simulation Example
Synthetic data set shown
in the figure is generated
by artificially scattering
points around a straight
line: y = 0.5x + 0.333 and
generate a scatter of 200
points in a ±0.1 interval in
the y direction.
This is achieved by first
generating a random
scatter in the interval
[0,1].
Then stretching it to the
interval [−1, 1], and finally
scaling it to ±0.1

-2 -1 0 1 2
-20

-15

-10

-5

0

5

10

x

f =
 3

x(
x-

1)
(x

-1
.9

)(x
+0

.7
)(x

+1
.8

) ±
 ε

Computer Simulation of Computer Simulation of αα--LMS LMS
AlgorithmAlgorithm

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y

Iteration 1

Iteration 10

Iteration 50 (MSE = 0.04)

MATLAB Program for MATLAB Program for αα--LMS LMS
LearningLearning
max_points =200; % Assume 200 data points
x =linspace(0,2.5,max_points); % Generate the x linspace
y =.5*x + 0.333; % Define a straight line
scatter =rand(1,max_points); % Generate scatter vector
ep =.1; % Compress scatter to 0.1
d =((2*scatter-1)*ep) + y; % Set up desired values
eta =.01; % Set learning rate
w =3*(2*rand(1,2) - 1); % Randomize weights

MATLAB Program for MATLAB Program for αα--LMS LMS
LearningLearning
for loop =1:50 % Train for 50 epochs

randindex =randperm(200); % Randomize order
for j =1: max_points % For each data point

i =randindex(j); % Get the index
s(i) =w(1) + w(2)*x(i); % Compute signal value
err(i) =d(i) - s(i); % Compute pattern error
w(1) =w(1) + eta*err(i)/(1+x(i)ˆ2);% Change the weights

w(2) =w(2) + eta*err(i)*x(i)/(1+x(i)ˆ2);
end

end

A Stochastic SettingA Stochastic Setting
Assumption that the training set T is well defined in
advance is incorrect when the setting is stochastic.
In such a situation, instead of deterministic
patterns, we have a sequence of samples {(Xk, dk)}
assumed to be drawn from a statistically stationary
population or process.
For adjustment of the neuron weights in response to
some pattern-dependent error measure, the error
computation has to be based on the expectation of
the error over the ensemble.

Definition of Mean Squared Error Definition of Mean Squared Error
(MSE)(MSE)

We introduce the square error on a pattern Xk as

Assumption: The weights are held fixed at Wk while
computing the expectation.
The mean-squared error can now be computed by taking
the expectation on both sides of (2):

()

() (2) 2
2
1

(1)
2
1

2
1

2

22

k
T
kk

T
kk

T
kkk

kk
T
kkk

WXXWWXdd

eWXd

+−=

=−=ε

[] [] [] [] (3)
2
1

2
1 2

k
T
kk

T
kk

T
kkkk WXXEWWXdEdEE +−== εε

Our problem…Our problem…
To find optimal weight vector that
minimizes the mean-square error.

Cross CorrelationsCross Correlations
For convenience of expression we define the
pattern vector P as the cross-correlation
between the desired scalar output, dk, and the
input vector, Xk

and the input correlation matrix, R, as
[] ()[] (4) ,,,dE 1k

k
nk

k
kk

T
k

T xdxddEXP L=∆

[] (5)

 1

 E

1

1111

1

k

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=∆

k
n

k
n

kk
n

k
n

k
n

kkkk

k
n

k

T
k

xxxxx

xxxxx

xx

EXXR
MOMM

L

L

Cross Correlations (contd.)Cross Correlations (contd.)
Using Eqns. (4)-(5), we rewrite the MSE
expression of Eqn. (3) succinctly as

Note that since the MSE is a quadratic
function of the weights it represents a
bowl shaped surface in the (n+1) x 1
weight—MSE cross space.

[] [] (6)
2
1

2
1 2

k
T

kk
T

kk RWWWPdEE +−== εε

Finding the Minimum Error Finding the Minimum Error
First compute the gradient by straightforward
differentiation which is a linear function of weights

To find the optimal set of weights, , simply set
which yields
This system of equations (8) is called the Weiner-Hopf
system and its solution is the Weiner solution or the
Weiner filter

is the point in weight space that represents the minimum
mean-square error

(7) ,,
0

RWP
ww

T

n

+−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=∇
εεε L

Ŵ 0=∇ε
(8) ˆ PWR =

(9) ˆ 1PRW −=

minε

Computing the Optimal FilterComputing the Optimal Filter
First compute and . Substituting from Eqn. (9)
into Eqn. (6) yields:

For the treatment of weight update procedures we
reformulate the expression for mean-square error in
terms of the deviation , of the weight vector
from the Weiner solution.

1−R P

[]

[] () ()

[] (12) ˆ
2
1

2
1

(11)
2
1

2
1

(10) ˆˆˆ
2
1

2
1

2

1112

2
min

WPdE

PRPPRRPRdE

WPWRWdE

T
k

TT
k

TT
k

−=

−+=

−+=

−−−

ε

WWV ˆ−=

Computing RComputing R
Substituting into Eqn. (6)

Note that since the mean-square error is non-negative, we
must have . This implies that R is positive semi-
definite. Usually however, R is positive definite.

WVW ˆ+=

[] () () ()

[]

() () () (16) ˆˆˆ
2
1

(15)
2
1

(14)

ˆˆˆˆˆ
2
1

(13) ˆˆˆ
2
1

min

min

22ˆ2

2

2

1

WWRWWRWW

RVV

WPVPWRWRVWWRVRVVdE

WVPWVRWVdE

TT

T

TTT

VPRVRPRVW

TTT
k

TT

k

TTT

−−−+=

+=

−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++++=

+−+++=

== −

ε

ε

ε

44 344 21

ε
0≥RVV T

DiagonalizationDiagonalization of Rof R
Assume that R has distinct eigenvalues . Then we
can construct a matrix Q whose columns are
corresponding eigenvectors of R.

R can be diagonalized using an orthogonal similarity
transformation as follows. Having constructed Q,
and knowing that:

iλ

iη

() (17) n10 ηηη L=Q

() (18)

 0

0 0
0 0

n

1

0

n10

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

λ

λ
λ

ηηη

L

MOM

L

L

LRQWe have

{ } (19) ,,,, 210
1

ndiagDRQQ λλλλ L==−

Some ObservationsSome Observations
It is usual to choose the eigenvectors of R to be
orthonormal and .
Then
From Eqn. (15) we know that the shape of is a
bowl-shaped paraboloid with a minimum at the
Weiner solution (V=0, the origin of V-space).
Slices of parallel to the W space yield elliptic
constant error contours which define the weights in
weight space that the specific value of the square-
error (say) at which the slice is made:

IQQT = TQQ =−1

1−== QDQQDQR T

ε

ε

cε
(20) constant

2
1

min εεRVV c
T =−=

Eigenvectors of REigenvectors of R
Also note from Eqn. (15) that we can compute the MSE
gradient in V-space as,

which defines a family of vectors in V-space.

Exactly n+1 of these pass through the origin of V-space
and these are the principal axes of the ellipse.

However, vectors passing through the origin must take the
. Therefore, for the principal axes

Clearly, is an eigenvector of R.

(21) RV=∇ε

Vλ ,'V

(22) '' VRV λ=
'V

MATLAB Simulation ExampleMATLAB Simulation Example
() ()()()() (23) 8.17.09.113 ++−−= xxxxxxfWe use a data

scatter of 100
sample points that
describes a fifth
order function
The points are
scattered around
the function in a ±1
interval. -2 -1 0 1 2

-20

-15

-10

-5

0

5

10

x

f =
 3

x(
x-

1)
(x

-1
.9

)(x
+0

.7
)(x

+1
.8

) ±
 ε

MATLAB Simulation:MATLAB Simulation:
Computing the MSE SurfaceComputing the MSE Surface

First calculate the correlation matrix R, the cross-
correlation P, , and the Weiner solution. These are
straightforward to compute since the data set is
deterministic.
For the pattern set under consideration, and the
Weiner solution can be computed to be

[]2dE

[] ,59.8592 =dE

(25)
8818.1

 3386.0

(24)
1.36 0

0 1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

P

R

(26)
1.3834-

 3386.0 ˆ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=W

MSE Surface in the Vicinity of MSE Surface in the Vicinity of
Weiner SolutionWeiner Solution

Steepest Descent Search with Exact Steepest Descent Search with Exact
Gradient InformationGradient Information

Steepest descent search
uses exact gradient
information available
from the mean-square
error surface to direct
the search in weight
space.
The figure shows a
projection of the
square-error function on
the plane.k

iw−ε

Steepest Descent Procedure Steepest Descent Procedure
SummarySummary

Provide an appropriate weight increment to to push the
error towards the minimum which occurs at .
Perturb the weight in a direction that depends on which
side of the optimal weight the current weight value
lies.
If the weight component lies to the left of , say at ,
where the error gradient is negative (as indicated by the
tangent) we need to increase .
If is on the right of , say at where the error
gradient is positive, we need to decrease .
This rule is summarized in the following statement:

k
iw
iŵ

iŵ k
iw

iŵ

iŵ

k
iw 1

k
iw

k
iw iŵ k

iw 2

k
iw

()

() k
ii

k
ik

i

w increase , ww0,
w
ε

 If ˆ<<
∂
∂

k
ii

k
ik

i

w decrease , ww0,
w
ε

 If ˆ>>
∂
∂

Weight Update ProcedureWeight Update Procedure
It follows logically therefore, that the weight component should be
updated in proportion with the negative of the gradient:

Vectorially we may write

where we now re-introduced the iteration time dependence into the
weight components:

Equation (28) is the steepest descent update procedure. Note that
steepest descent uses exact gradient information at each step to
decide weight changes.

()27 n,,0,1i 1 K=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−+=+
k
i

k
i

k
i w

ww εη

() (28) 1 εη ∇−+=+ kk WW

(29) ,,
0

T

k
n

k ww ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=∇
εεε K

Convergence of Steepest Descent Convergence of Steepest Descent -- 11
Question: What can one say about the stability of the
algorithm? Does it converge for all values of ?
To answer this question consider the following series of
subtitutions and transformations. From Eqns. (28) and (21)

Transforming Eqn. (33) into V-space (the principal coordinate
system) by substitution of for yields:

η

()

()
() (33) ˆ1

(32) ˆ

(31)
(30) 1

WRWR

WWRW

RVW
WW

k

kk

kk

kk

ηη

η

η
εη

+−=

−+=

−=
∇−+=+

WVk
ˆ+ kW

() (34) 1 kk VRIV η−=+

Steepest Descent Convergence Steepest Descent Convergence -- 22
Rotation to the principal axes of the elliptic contours can be
effected by using :

where D is the diagonal eigenvalue matrix. Recursive application of
Eqn. (37) yields:

It follows from this that for stability and convergence of the
algorithm:

'QVV =
() (35) ''

1 kk QVRIQV η−=+

or ()
() (37)

(36)
'

'1'
1

k

kk

VDI

QVRIQV

η

η

−=

−= −
+

() (38) '
0

' VDIV k
k η−=

() (39) 0lim =−
∞→

k

k
DI η

Steepest Descent Convergence Steepest Descent Convergence -- 33
This requires that

being the largest eigenvalue of R.

If this condition is satisfied then we have

Steepest descent is guaranteed to converge to the Weiner solution as long as
the learning rate is maintained within the limits defined by Eqn. (41).

() (40) 01lim max =−
∞→

k

k
ηλ

or (41) 20
maxλ

η <<

maxλ

()
(43) ˆlim

(42) 0ˆlimlim

k

1'

WW

WWQV

k

kkkk

=

=−=

∞→

−

∞→∞→

or

Computer Simulation ExampleComputer Simulation Example
This simulation example employs the fifth order function data
scatter with the data shifted in the y direction by 0.5.
Consequently, the values of R,P and the Weiner solution are
respectively:

Exact gradient information is available since the correlation matrix
R and the cross-correlation matrix P are known.
The weights are updated using the equation:

(45)
3834.1
5303.1 ˆ

(44)
4625.1
8386.0

 ,
1.61 0.500

0.500 1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

W

PR

() (46) ˆ21 kkk WWRWW −+=+ η

MATLAB Simulation ExampleMATLAB Simulation Example
eta = .01; % Set learning rate
R=zeros(2,2); % Initialize correlation matrix
X = [ones(1,max_points);x]; % Augment input vectors

P = (sum([d.*X(1,:); d.*X(2,:)],2))/max_points; % Cross-correlations
D = (sum(d.^2))/max_points; %squares; % target expectations

for k =1:max_points
R = R + X(:,k)*X(:,k)'; % Compute R

end

R = R/max_points;
weiner=inv(R)*P; % Compute the Weiner solution
errormin = D - P'*inv(R)*P; % Find the minimum error

MATLAB Simulation Example (contd.)MATLAB Simulation Example (contd.)
shift1 = linspace(-12,12, 21); % Generate a weight space matrix
shift2 = linspace(-9,9, 21);
for i = 1:21 % Compute a weight matrix about

shiftwts(1,i) = weiner(1)+shift1(i); % Weiner solution
shiftwts(2,i) = weiner(2)+shift2(i);

end

for i=1:21 % Compute the error matrix
for j = 1:21 % to plot the error contours
error(i,j) = sum((d - (shiftwts(1,i) + x.*shiftwts(2,j))).^2);

end
end
error = error/max_points;

figure; hold on; % Plot the error contours
plot(weiner(1),weiner(2),'*k') % Labelling statements no shown

MATLAB Simulation Example (Contd.)MATLAB Simulation Example (Contd.)
w = 10*(2*rand(2,1)-1); % Randomize weights
w0 = w; % Remember the initial weights

for loop = 1:500 % Perform descent for 500 iters
w = w + eta*(-2*(R*w-P));
wts1(loop)=w(1); wts2(loop)=w(2);

End

% Set up weights for plotting
wts1=[w0(1) wts1]; wts2=[w0(2) wts2];

plot(wts1,wts2,'r') % Plot the weight trajectory

Smooth Trajectory towards the Smooth Trajectory towards the
Weiner SolutionWeiner Solution

Steepest
descent uses
exact gradient
information to
search the
Weiner
solution in
weight space.

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

55.3

90.1

125

160

160

160

160

194

194

229

229

264

264

299
333368

w0

w 1 Weiner solution
(1.53, -1.38)

W
0
 = (-3.9, 6.27)T

µµ--LMS: Approximate Gradient LMS: Approximate Gradient
DescentDescent

The problem with steepest descent is that true gradient
information is only available in situations where the data set
is completely specified in advance.

It is then possible to compute R and P exactly, and thus the
true gradient at iteration

However, when the data set comprises a random stream of
patterns (drawn from a stationary distribution), R and P
cannot be computed accurately. To find a correct
approximation one might have to examine the data stream for
a reasonably large period of time and keep averaging out.

How long should we examine the stream to get reliable
estimates of R and P ?

PRWk k −=∇ε:

DefinitionDefinition
The µ-LMS algorithm is convergent in
the mean if the average of the weight
vector Wk approaches the optimal
solution Wopt as the number of iterations
k, approaches infinity:

E[Wk] → Wopt as k → ∞

µµ--LMS employs LMS employs εεk k for for εε=Ε[=Ε[εεkk]]
The gradient computation modifies to:

where , and since we are dealing with linear
neurons. Note therefore that the recursive update equation then
becomes

What value does the long term average of converge to? Taking
the Expectation of both sides of Eqn. (47):

(47) ,,,~
00

kk

T

k
n

k
k
k

k

T

k
n

k
k
k

k Xe
w
e

w
ee

ww
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=∇ KK
εεε

()kkk sde −= k
T
kk WXs =

()
(49)

(48))~(1

kkk

kkkkkkk

XeW
XsdWWW

η
ηεη

+=
−+=∇−+=+

kε∇
~

[] [] []

(52)
(51)
(50) ~

ε

ε

∇=
−=

−−=−=∇
PRW

WXXXdEXeEE T
kkkkkkk

Some ObservationsSome Observations
Since the long term average of approaches , we can
safely use as an unbiased estimate. That’s what makes
µ-LMS work!

Since approaches in the long run, one could keep
collecting for a sufficiently large number of iterations
(while keeping the weights fixed), and then make a weight
change collectively for all those iterations together.

If the data set is finite (deterministic), then one can
compute accurately by first collecting the different
gradients over all training patterns for the same set of
weights. This accurate measure of the gradient could then be
used to change the weights. In this situation µ-LMS is
identical to the steepest descent algorithm.

kε∇
~ ε∇

kε∇
~

kε∇
~

ε∇

kε∇
~ ε∇

kε∇
~

kX

Observations Contd.Observations Contd.
Even if the data set is deterministic, we still use to update
the weights. After all if the data set becomes large, collection
of all the gradients becomes expensive in terms of storage.
Much easier to just go ahead and use

Be clear about the approximation made: we are estimating the
true gradient (which should be computed from) by a
gradient computed from the instantaneous sample error .
Although this may seem to be a rather drastic approximation, it
works.

In the deterministic case we can justify this as follows: if the
learning rate , is kept small, the weight change in each
iteration will be small and consequently the weight vector W
will remain “somewhat constant” over Q iterations where Q is
the number of patterns in the training set.

kε∇
~

!~
kε∇

[]kE ε
kε

η

Observations Contd.Observations Contd.
Of course this is provided that Q is a small number! To see this,
observe the total weight change , over Q iterations from the
iteration:

Where denotes the mean-square error. Thus the weight updates
follow the true gradient on average.

W∇ thk

(56)

(55) 1

(54) 1

(53)

1

0

1

0

1

0

k

Q

i
ik

k

Q

i k

ik

Q

i ik

ik

W
Q

QW
Q

WQ
Q

W
W

∂
∂

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=

∂
∂

−=∇

∑

∑

∑

−

=
+

−

=

+

−

= +

+

ε

ε

ε

ε

ε

Observations Contd.Observations Contd.
Observe that steepest descent search is guaranteed to search
the Weiner solution provided the learning rate condition (41) is
satisfied.

Now since is an unbiased estimate of one can expect
that µ-LMS too will search out the Weiner solution. Indeed it
does—but not smoothly. This is to be expected since we are only
using an estimate of the true gradient for immediate use.

Although α-LMS and µ- LMS are similar algorithms, α-LMS
works on the normalizing training set. What this simply means is
that α-LMS also uses gradient information, and will eventually
search out the Weiner solution-of the normalized training set.
However, in one case the two algorithms are identical: the case
when input vectors are bipolar. (Why?)

kε∇
~ ε∇

µµ--LMS Algorithm:LMS Algorithm:
Convergence in the Mean (1)Convergence in the Mean (1)

Definition 0.1 The -LMS algorithm is convergent in the mean
if the average of the weight vector approaches the optimal
solution as the number of iterations k, approaches infinity:

Definition 0.2 The -LMS algorithm is convergent in the mean
square if the average of the squared error approaches a
constant as the Number of iterations, k, approaches infinity:

Convergence in the mean square is a stronger criterion than
convergence in the mean. In this section we discuss convergence
in the mean and merely state the result for convergence in the
mean square.

µ
kW

Ŵ
[] (57) kas ˆ ∞→→WWE k

µ
kε

[] (58) asconstant ∞→→ kE kε

µµ--LMS Algorithm:LMS Algorithm:
Convergence in the Mean (2)Convergence in the Mean (2)

Consider the µ-LMS weight update equation:

Taking the expectation of both sides of Eqn. (63) yields,

Where P and R are as already defined

()
()

() (63) -I

(62) -

(61)

(60)

(59) 1

kkk
T
kk

kkk
T
kkk

kk
T
kkkk

kk
T
kkk

kkkkk

XdWXX

XdWXXW

XWXXdW

XWXdW

XsdWW

ηη

ηη

ηη

η

η

+=

+=

−+=

−+=

−+=+

[] []() [] []
() [] (65)

(64) 1

PWERI
XdEWEXXEIWE

k

kkk
T
kkk

ηη
ηη

+−=
+−=+

µµ--LMS Algorithm:LMS Algorithm:
Convergence in the Mean (3)Convergence in the Mean (3)

Appropriate substitution yields:

Pre-multiplication throughout by results in:

And subtraction of from both sides gives:

We will re-write Eqn. (69) in familiar terms:

[] () []
() []
() [] WQDQWEQDIQ

WQDQWEQDQQQ

WQDQWEQDQIWE

T
k

T

T
k

TT

T
k

T
k

ˆ

(66) ˆ

ˆ
1

ηη

ηη

ηη

+−=

+−=

+−=+

TQ

[] () [] (67) ˆ
1 WDQWEQDIWEQ T

k
T

k
T ηη +−=+

WQT ˆ

[]() () [] ()
() []() (69) ˆ

(68) ˆˆ
1

WWEQDI

WQDIWEQDIWWEQ

k
T

T
k

T
k

T

−−=

−−−=−+

η

ηη

() (70) ~~
1 k

T
k

T VQDIVQ η−=+

µµ--LMS Algorithm:LMS Algorithm:
Convergence in the Mean (4)Convergence in the Mean (4)
And

Where and . Eqn. (71) represents a set of n+1
Decoupled difference equations :

Recursive application of Eqn. (72) yields,

To ensure convergence in the mean, as since this
condition requires that the deviation of from should tend to 0.

() (71) ~ ~ ''
1 kk VDIV η−=+

[] WWEV kk
ˆ~ −= k

T
k VQV ~~' =

() (72) n.,0,1,i ~1~ '1' K=−=
+ k

ii
k
i vv ηλ

() (73) n ,0,1,i ~1~ 0'' K=−= i
k

i
k
i vv ηλ

0~' →
k
iv ∞→k

[]kWE Ŵ

µµ--LMS Algorithm:LMS Algorithm:
Convergence in the Mean (5)Convergence in the Mean (5)

Therefore from Eqn. (73):

If this condition is satisfied for the largest eigenvalue
then it will be satisfied for all other eigenvalues. We
therefore conclude that if

then the µ-LMS algorithm is convergent in the mean.
Further, since tr = (where tr is the trace
of R) convergence is assured if

(74) n.,0,1,i 1 |1| K=<− iηλ

maxλ

(75) 20
maxλ

η <<

[]R max
0

λλ ≥∑
=

n

i
i []R

[] (76) 20
Rtr

<<η

Random Walk towards the Weiner Random Walk towards the Weiner
SolutionSolution

Assume the
familiar fifth
order function
µ-LMS uses a
local estimate of
gradient to
search the
Weiner solution
in weight space.

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

44.96975

44.96975

44.96975

69.19828

69.19828

69.19828

69.19828

69
.1

98
28

93.42682

93.42682

93
.4

26
82

93.42682 93.42682

93.42682

117.6554

117.6554

11
7.6

55
4

117.6554

117.6554

117.6554

141.8839141.8839

14
1.

88
39

141.8839

141 8839

141.8839

166.1124

166.1124

166.1124

166.1124

190.341

190.341

190.341

90 341

214.5695

214.5695

Weiner solution
(0.339, -1.881)

µ LMS solution
(0.5373, -2.3311)

w0

w1

Computer Simulation ExampleComputer Simulation Example
µ-LMS learning assumes that the data stream is stochastic
(with stationary properties).

To simulate this data stream generate data points on the fly---
within the weight update loop.

The correlation and cross-correlation matrices R and P are
computed by averaging over a sufficiently large stream of data
points.

The trajectory makes the expected random walk towards the
Weiner solution starting out from .

()TW 611.13 ,096.140 −=

MATLAB Code SegmentMATLAB Code Segment
for loop = 1:200
x = (2*rand-1)*2;
X = [1;x];
y = 3.*x.^5 - 1.2.*x.^4 - 12.27.*x.^3 + 3.288.*x.^2

+ 7.182.*x;

scatter = (2*rand-1)*eps;
d = y + scatter;
w = w + 2*eta*(d -X'*w)*X;
wts1(loop)=w(1);
wts2(loop)=w(2);

end

MATLAB Code NotesMATLAB Code Notes
The rest of the program is very similar to the code for steepest
descent search.

The source function for the steepest descent simulation example
was shifted vertically by 0.5 (resulting in a change in the
orientation of the error contours).

Notice how the data points are now generated on-the-fly to
simulate the stochastic stream of training data.

Since the synthetic source function and the scatter generation
functions are fixed, the stream has stationary stochastic
properties.

The values of R and P were pre-computed by averaging over a
stream of 10,000 points.

Application of LMS Tapped Delay Application of LMS Tapped Delay
Line FiltersLine Filters

Sampled input is delayed through a series of delay elements.
These n signal samples (including the current one) are input
to the adaptive linear combiner (ALC)
Output is the inner product yk = Xk

TWk, where X = (xk, xk−1, . .
. , xk−n+1)T andW = (w1, . . . ,wn)T .
LMS procedure employed to adjust the weights so that the
output matches the desired response.

Adaptive Noise CancellationAdaptive Noise Cancellation

Adaptive Noise Cancellation:Adaptive Noise Cancellation:
Removal Of Noise Removal Of Noise nn00 From Signal From Signal ss

Goal: To pass the signal and remove the noise.
This approach can be used only if a reference
signal is available that contains a noise
component n1 that is correlated with the noise
n0.
The adaptive noise canceller subtracts the
filtered reference signal from the noisy input,
thereby making the output of the canceller an
error signal.
A simple argument shows that the filter can
indeed adapt to cancel the noise rather easily.

Adaptive Noise Cancellation: Adaptive Noise Cancellation:
ProcedureProcedure

If we assume that s, n0, n1, y are statistically
independent and stationary with zero means,
the analysis becomes tractable.
For, є = s + n0 − y which on squaring yields є2 =
s2 + (n0 − y)2 + 2s(n0 − y)
If we take expectations on both sides of above
equation and assume that s is uncorrelated with
n0 and y, we have E[є2] = E[s2] + E[(n0 − y)2] +
2E[s(n0 − y)]
However, the last term tends to be zero due to
the uncorrelated nature of s and(n0 − y), and
so E[є2] = E[s2] + E[(n0 − y)2]

Noise cancellation in fetal ECGNoise cancellation in fetal ECG
Recordings from the
fetal ECG experiment
at a bandwidth 3–35
Hz, sampling rate 256
Hz.

(a) Reference input.
(b) Primary input.
(c) Noise cancelled
fetal ECG with
interfering maternal
ECG signal removed

Noise cancellation in fetal ECGNoise cancellation in fetal ECG
Recordings from the
fetal ECG experiment
at a bandwidth of 0.3–
75 Hz, sampling rate
512 Hz.

(a) Reference input.
(b) Primary input.
(c) Noise canceller
output—fetal ECG
with interfering
maternal ECG signal
removed

