
Copyright © 2004
Tata McGraw Hill Publishing Co.

Neural Networks: A Classroom Approach
Satish Kumar

Department of Physics & Computer Science
Dayalbagh Educational Institute (Deemed University)

Chapter 6 Chapter 6

Supervised Learning Supervised Learning
II:II:
BackpropagationBackpropagation and and
BeyondBeyond

Multilayered Network ArchitecturesMultilayered Network Architectures

Linear neuron Sigmoidal neuron

Input layer Hidden layer Output layer

Approximation and GeneralizationApproximation and Generalization
What kind of
network is required
to learn with
sufficient accuracy a
function that is
represented by a
finite data set?
Does the trained
network predict
values correctly on
unseen inputs?

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

y

Function Described by Discrete Function Described by Discrete
DataData

Assume a set of Q
training vector pairs:
T = (Xk,Dk) k=1…Q
Xk � Rn, Dk � Rp,
where Dk is a vector
response desired
when input Xk is
presented as input
to the network.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-20

-15

-10

-5

0

5

10

15

20

x

f(x
)

3 x5-1.2 x4-12.27 x3+3.288 x2+7.182 x

Supervised Learning ProcedureSupervised Learning Procedure

Error information fed back for network adaptation

ErrorSkXk

DxNeural Network

BackpropagationBackpropagation Weight Update Weight Update
ProcedureProcedure
1. Select a pattern Xk from the training set T present it to

the network.
2. Forward Pass: Compute activations and signals of input,

hidden and output neurons in that sequence.
3. Error Computation: Compute the error over the output

neurons by comparing the generated outputs with the
desired outputs.

4. Compute Weight Changes: Use the error to compute the
change in the hidden to output layer weights, and the
change in input to hidden layer weights such that a global
error measure gets reduced.

BackpropagationBackpropagation Weight Update Weight Update
ProcedureProcedure
5. Update all weights of the network.

6. Repeat Steps 1 through 5 until the global error
falls below a predefined threshold.

Square Error FunctionSquare Error Function
The instantaneous summed squared error εk is
the sum of the squares of each individual
output error ej

k, scaled by one-half:

Error SurfaceError Surface

Gradient Descent ProcedureGradient Descent Procedure

Recall: Gradient Descent Update Recall: Gradient Descent Update
Equation Equation

It follows logically therefore, that the weight
component should be updated in proportion
with the negative of the gradient as follows:

Neuron Signal FunctionsNeuron Signal Functions
Input layer neurons are
linear.

Hidden and output layer
neurons are sigmoidal.

A training data set is
assumed to be given
which will be used to
train the network.

Notation for Notation for BackpropagationBackpropagation
Algorithm DerivationAlgorithm Derivation

The General Idea Behind The General Idea Behind
Iterative Training…Iterative Training…

Employ the gradient of the pattern error in order
to reduce the global error over the entire training
set.
Compute the error gradient for a pattern and use
it to change the weights in the network.
Such weight changes are effected for a sequence
of training pairs (X1,D1), (X2,D2), . . . , (Xk,Dk), . . .
picked from the training set.
Each weight change perturbs the existing neural
network slightly, in order to reduce the error on
the pattern in question.

Square Error Performance Square Error Performance
FunctionFunction

The kth training pair (Xk,Dk) then defines the
instantaneous error:

Ek = Dk − S(Yk) where
Ek = (e1

k, . . . , ep
k)

= (d1
k − S(y1

k), . . . , dp
k − S(yp

k))
The instantaneous summed squared error Ek is
the sum of the squares of each individual
output error ej

k, scaled by one-half:

The Difference Between Batch and The Difference Between Batch and
Pattern UpdatePattern Update

Derivation of BP Algorithm:Derivation of BP Algorithm:
Forward PassForward Pass--Input LayerInput Layer

Derivation of BP Algorithm:Derivation of BP Algorithm:
Forward PassForward Pass--Hidden LayerHidden Layer

Derivation of BP Algorithm:Derivation of BP Algorithm:
Forward PassForward Pass--Output LayerOutput Layer

Recall the Gradient Descent Recall the Gradient Descent
Update Equation Update Equation

A weight gets
updated based on
the negative of the
error gradient with
respect to the
weight

Derivation of BP Algorithm:Derivation of BP Algorithm:
Computation of GradientsComputation of Gradients

Derivation of BP Algorithm:Derivation of BP Algorithm:
Computation of GradientsComputation of Gradients

Derivation of BP Algorithm:Derivation of BP Algorithm:
Computation of GradientsComputation of Gradients

Derivation of BP Algorithm:Derivation of BP Algorithm:
Computation of GradientsComputation of Gradients

Derivation of BP Algorithm:Derivation of BP Algorithm:
Computation of GradientsComputation of Gradients

Generalized Delta Rule: Generalized Delta Rule: MomentumMomentum
Increases the rate of learning while
maintaining stability

How Momentum WorksHow Momentum Works
Momentum should be less than 1
for convergent dynamics.
If the gradient has the same
sign on consecutive iterations
the net weight change increases
over those iterations
accelerating the descent.
If the gradient has different
signs on consecutive iterations
then the net weight change
decreases over those iterations
and the momentum decelerates
the weight space traversal. This
helps avoid oscillations.

Derivation of BP Algorithm:Derivation of BP Algorithm:
Finally…!Finally…!

BackpropagationBackpropagation Algorithm:Algorithm:
Operational SummaryOperational Summary

BackpropagationBackpropagation Algorithm:Algorithm:
Operational Operational Summary(contdSummary(contd.).)

HandHand--worked Exampleworked Example

Forward Pass 1/Backprop Pass 1Forward Pass 1/Backprop Pass 1

Weight Changes: Pass 1Weight Changes: Pass 1

Network NNetwork N22 after first Iterationafter first Iteration

Forward Pass 2/Backprop Pass 2Forward Pass 2/Backprop Pass 2

Weight Changes: Pass 2Weight Changes: Pass 2

Network NNetwork N33 after second Iterationafter second Iteration

MATLAB Simulation Example 1MATLAB Simulation Example 1
Two Dimensional XOR ClassifierTwo Dimensional XOR Classifier

Specifying a 0 or 1 desired
value does not make sense
since a sigmoidal neuron can
generate a 0 or 1 signal only
at an activation value −∞ or ∞.
So it is never going to quite
get there.
The values 0.05, 0.95 are
somewhat more reasonable
representatives of 0 and 1.
Note that the inputs can still
be 0 and 1 but the desired
values must be changed
keeping in mind the signal
range.

Generalization Surface, Grayscale Generalization Surface, Grayscale
Map of the Network ResponseMap of the Network Response

MATLAB Simulation 2:MATLAB Simulation 2:
Function ApproximationFunction Approximation

MATLAB Simulation 2:MATLAB Simulation 2:
Error Error vsvs EpochsEpochs

0 20 40 60 80 100
0

5

10

15

20

25

30
Error vs Epoch plot for 100 epochs

Epoch Number

S
qu

ar
ed

 E
rro

r

MATLAB Simulation 2:MATLAB Simulation 2:
Simulation SnapshotsSimulation Snapshots

MATLAB Simulation 2:MATLAB Simulation 2:
Error Histogram and Error MeshError Histogram and Error Mesh

MATLAB Code for MATLAB Code for BackpropBackprop
pattern=[0.1 0.1 0.1

0.1 .95 .95
.95 0.1 .95
.95 .95 0.1];

eta = 1.0; % Learning rate
alpha = 0.7; % Momentum
tol = 0.001; % Error tolerance
Q = 4; % Total no. of the patterns to be input
n = 2; q = 2; p = 1; % Architecture
Wih = 2 * rand(n+1,q) - 1; % Input-hidden weight matrix
Whj = 2 * rand(q+1,p) - 1; % Hidden-output weight matrix
DeltaWih = zeros(n+1,q); % Weight change matrices
DeltaWhj = zeros(q+1,p);
DeltaWihOld = zeros(n+1,q);
DeltaWhjOld = zeros(q+1,p);

MATLAB Code for MATLAB Code for BackpropBackprop -- 22
Si = [ones(Q,1) pattern(:,1:2)]; % Input signals
D = pattern(:,3); % Desired values
Sh = [1 zeros(1,q)]; % Hidden neuron signals
Sy = zeros(1,p); % Output neuron signals
deltaO = zeros(1,p); % Error-slope product at output
deltaH = zeros(1,q+1); % Error-slope product at hidden
sumerror = 2*tol; % To get in to the loop
while (sumerror > tol) % Iterate
sumerror = 0;
for k = 1:Q

Zh = Si(k,:) * Wih; % Hidden activations
Sh = [1 1./(1 + exp(-Zh))]; % Hidden signals
Yj = Sh * Whj; % Output activations
Sy = 1./(1 + exp(-Yj)); % Output signals
Ek = D(k) - Sy; % Error vector
deltaO = Ek .* Sy .* (1 - Sy); % delta output

MATLAB Code for MATLAB Code for BackpropBackprop -- 3 3
for h = 1:q+1

DeltaWhj(h,:) = deltaO * Sh(h); % Delta W:hidden-output
end
for h = 2:q+1 % delta hidden

deltaH(h)=(deltaO*Whj(h,:)’)*Sh(h)*(1-Sh(h));
end
for i = 1:n+1 % Delta W:input-hidden

DeltaWih(i,:) = deltaH(2:q+1) * Si(k,i);
end % Update weights
Wih = Wih + eta * DeltaWih + alpha * DeltaWihOld;
Whj = Whj + eta * DeltaWhj + alpha * DeltaWhjOld;
DeltaWihOld = DeltaWih; DeltaWhjOld = DeltaWhj; % Store changes
sumerror = sumerror + sum(Ek.ˆ2); % Compute error

end
sumerror %Print epoch error

end

Practical Considerations:Practical Considerations:
Pattern or Batch Mode TrainingPattern or Batch Mode Training

Pattern Mode:
Present a single pattern
Compute local gradients
Change the network weights

Given Q training patterns {Xi,Di}i=1
Q , and some initial

neural network N0, pattern mode training generates a
sequence of Q neural networks N1, . . . ,NQ over one
epoch of training.
Batch Mode (true gradient descent) :

Collect the error gradients over an entire epoch
Change the weights of the initial neural network

N0 in one shot.

Practical Considerations:Practical Considerations:
When Do We Stop Training?When Do We Stop Training?

1. Compare absolute value of squared error averaged over one epoch, Eav,
with a training tolerance, typically 0.01 or as low as 0.0001.

2. Alternatively use the absolute rate of change of the mean squared error
per epoch.

3. Stop the training process if the Euclidean norm of the error gradient
falls below a sufficiently small threshold. (Requires computation of the
gradient at the end of each epoch.)

4. Check the generalization ability of the network. The network generalizes
well if it is able to predict correct or near correct outputs for unseen
inputs.

Partition the data set T into two subsets: Ttraining (used for estimation) and
Ttest (used for evaluation of the network)
Ttraining is divided into Tlearning and Tvalidation. (Tvalidation might comprise 20 − 30
per cent of the patterns in Ttraining.
Use Tlearning to train the network using backpropagation.
Evaluate network performance at the end of each epoch using Tvalidation.
Stop the training process when the error on Tvalidation starts to rise.

Practical Considerations:Practical Considerations:
Use a Bipolar Signal FunctionUse a Bipolar Signal Function

Introducing a bipolar signal function such as the
hyperbolic tangent function can cause a significant
speed up in the network convergence.
Specifically, S(x) = a tanh(λx) with a = 1.716 and λ
= 0.66 being suitable values.
The use of this function comes with the added
advantage that the range of valid desired signals
extends to [−1 + ε, 1 − ε] where ε > 0.

Practical Considerations:Practical Considerations:
Weight InitializationWeight Initialization

Choose small random values within some interval [−ε, +ε]. (Identical
initial values can lead to network paralysis—the network learns
nothing.)
Avoid very small ranges of weight randomization—may lead to very
slow learning initially.
Incorrect choice of weights might lead to network saturation where
weight changes are almost negligible over consecutive epochs.

May be incorrectly interpreted as a local minimum.
Signal values are close to the 0 or 1; signal derivatives are
infinitesimally small.
Weight changes are negligibly small.
Small weight changes allow the neuron to escape from incorrect
saturation only after a very long time.
Randomization of network weights helps avoid these problems.

For bipolar signal functions it is useful to randomize weights
depending on individual neuron fan-in, fi : randomized in the interval
(−2.4/fi , 2.4/fi)

Practical Considerations:Practical Considerations:
Check the Input and Target RangesCheck the Input and Target Ranges

Given a logistic signal function which ranges in the interval
(0,1) the desired outputs of patterns in the entire training
set should lie in an interval [0 + ε, 1 − ε] where ε > 0 is some
small number.
Desired values of 0 and 1 causes weights to grow increasingly
large in order to generate these limiting values of the output.
To generate a 0 and 1 requires a −∞ or ∞ activation which can
be accomplished by increasing the values of weights.
Algorithm cannot be expected to converge if desired outputs
lie outside the interval [0,1].
If one were to use a hyperbolic tangent signal function with

the range [−1.716,+1.716] , then target values of −1, 0 or +1
would be perfectly acceptable.

Practical Considerations:Practical Considerations:
Adjusting Learning RatesAdjusting Learning Rates

For small learning rates, convergence to the local minimum in
question is guaranteed but may lead to long training times.
If network learning is non-uniform, and we stop before the network
is trained to an error minimum, some weights will have reached their
final “optimal” values; others may not have.

In such a situation, the network might perform well on some patterns
and very poorly on others.

If we assume that the error function can be approximated by a
quadratic then we can make the following observations.

An optimal learning rate reaches the error minimum in a single learning
step.
Rates that are lower take longer to converge to the same solution.
Rates that are larger but less than twice the optimal learning rate
converge to the error minimum but only after much oscillation.
Learning rates that are larger than twice the optimal value will diverge
from the solution.

Practical Considerations:Practical Considerations:
Selection of a Network ArchitectureSelection of a Network Architecture

A three-layered network can approximate any continuous
function.
Problem with multilayered nets using one hidden layer:

neurons tend to interact with each other globally
interactions make it difficult to generate approximations of
arbitrary accuracy.

With two hidden layers the curve-fitting process is easier:
The first hidden layer extracts local features of the
function (as binary threshold neurons partition the input
space into regions.)
Global features are extracted in the second hidden layer.

Practical Considerations:Practical Considerations:
Cross ValidationCross Validation

Divide the data set into a training set Ttraining and
a test set Ttest .
Subdivide Ttraining into two subsets: one to train
the network Tlearning, and one to validate the
network Tvalidation.
Train different network architectures on Tlearning
and evaluate their performance on Tvalidation.
Select the best network.
Finally, retrain this network architecture on
Ttraining.
Test for generalization ability using Ttest.

BackpropagationBackpropagation: :
TwoTwo--Spirals ProblemSpirals Problem

Solved by Lang and
Witbrock 2-5-5-5-1
architecture 138
weights.
In the Lang–Witbrock
network each layer of
neurons is connected
to every succeeding
layer.

-8 -6 -4 -2 0 2 4 6 8
-6

-4

-2

0

2

4

6

Structure Growing AlgorithmsStructure Growing Algorithms
Approach 1:

Starts out with a large number of weights in the
network and gradually prunes them.
Idea: eliminate weights that are least important.
Examples: Optimal Brain Damage, Optimal Brain
Surgeon, Hinton weight decay procedure.

Approach 2:
Starts out with a minimal architecture which is made
to grow during training.
Examples: Tower algorithm, Pyramid algorithm, cascade
correlation algorithm.

Structure Growing Algorithms: Structure Growing Algorithms:
Tower AlgorithmTower Algorithm

Train a single TLN using the pocket learning algorithm with a ratchet.
If there are n inputs, we have to train n + 1 weights.

Freeze the weights of the TLN.
Now add a new TLN to the system.

This TLN gets all the original n inputs, as well as an additional input from the
first TLN trained.

Train the n + 2 weights of this TLN using the pocket learning algorithm with
ratchet.
Continue this process until no further improvement in classification
accuracy is achieved.
Freeze the weights of the TLN.

Each added TLN is guaranteed to correctly classify a greater number of input
patterns

The tower algorithm is guaranteed to classify linearly non-separable
pattern sets with an arbitrarily high probability provided

enough TLNs are added
enough training iterations are provided to train each incrementally added TLN.

Structure Growing Algorithms: Structure Growing Algorithms:
Pyramid AlgorithmPyramid Algorithm

Similar to the tower algorithm
Each added TLN receives inputs from the n original
inputs
The added TLN receives inputs from all previously
added TLNs.
Training is done using the pocket algorithm with
ratchet.

Structure Growing Algorithms: Structure Growing Algorithms:
Cascade Correlation AlgorithmCascade Correlation Algorithm

Assume a minimal network structure: n input neurons; p output neurons
with full feedforward connectivity, the requisite bias connections, and
no hidden neurons.

This network is trained using backpropagation learning (or the
Quickprop algorithm) until no further reduction in error takes place.
Errors at output neurons are computed over the entire pattern set.
Next, a single hidden neuron is added. This neuron receives n + 1 inputs
including the bias and is not connected to the p output neurons.
The weights of this hidden neuron are adjusted using BP or Quickprop
The goal of training is to maximize the correlation C between the
signal of the hidden neuron and the residual output error.

QuickpropQuickprop: Fast Relative of : Fast Relative of
BackpropBackprop

The slope of the error
function is thus linear.
The algorithm pushes the
weight wij directly to a value
that minimizes the parabolic
error.
To compute this weight, we
require the previous value of
the gradient ∂E/∂wij

k−1 and the
previous weight change.

Works with second order error derivative information instead of only
the usual first order gradients.
Based on two “risky” assumptions:

The error function E is a parabolic function of any weight wij .
The change in the slope of the error curve is independent of other
concurrent weight changes.

Universal Function ApproximationUniversal Function Approximation
Kolmogorov proved that any continuous
function f defined on an n-dimensional
cube is representable by sums and
superpositions of continuous functions of
exactly one variable:

Universal Approximation TheoremUniversal Approximation Theorem

Applications of BP: Steering Applications of BP: Steering
Autonomous VehiclesAutonomous Vehicles

The primary objective is to steer a robot
vehicle like Carnegie Mellon University’s
(CMU) Navlab, which is equipped with
motors on the steering wheel, brake and
accelerator pedal thereby enabling
computer control of the vehicles’
trajectory.

Applications of BP: Steering Applications of BP: Steering
Autonomous VehiclesAutonomous Vehicles--ALVINNALVINN

ALVINN
(autonomous land vehicle in a neural network)

ALVINN Network ArchitectureALVINN Network Architecture
Input to the system is a 30 × 32 neuron “retina”
Video images are projected onto the retina.
Each of these 960 input neurons is connected to four hidden
layer neurons which are connected to 30 output neurons.
Output neurons represent different steering directions—the
central neuron being the “straight ahead” and the first and last
neurons denoting “sharp left” and “sharp right” turns of 20 m
radius respectively.
To compute an appropriate steering angle, an image from a video
camera is reduced to 30 × 32 pixels and presented to the
network.
The output layer activation profile is translated to a steering
command using a center of mass around the hill of activation
surrounding the output neuron with the largest activation.
Training of ALVINN involves presentation of video images as a
person drives the vehicle using the steering angle as the desired
output.

CMU NAVLAB and ALVINNCMU NAVLAB and ALVINN
ALVINN runs on two SUNSPARC stations on board
Navlab and training on the fly takes about two
minutes.
During this time the vehicle is driven over a 1/4 to
1/2 mile stretch of the road and ALVINN is
presented about 50 images, each transformed 15
times to generate 750 images.
The ALVINN system successfully steers NAVLAB in
a variety of weather and lighting conditions. With the
system capable of processing 10 images/second
Navlab can drive at speeds up to 55 mph, five times
faster than any other connectionist system.
On highways, ALVINN has been trained to navigate
at up to 90 mph!

Reinforcement Learning:Reinforcement Learning:
The Underlying PrincipleThe Underlying Principle

If an action of a system is followed by a
satisfactory response, then strengthen the
tendency to produce that action.

Evaluate the success and failure of a neuron to
produce a desired response.

If success: encourage the neuron to respond in the
same way by supplying a reward
Otherwise supply a penalty

Requires the presence of an external critic
that evaluates the response within an
environment.

Types of Reinforcement LearningTypes of Reinforcement Learning
Reinforcement learning algorithms
generally fall into one of three
categories:

Non-associative
Associative
Sequential

Three Basic ComponentsThree Basic Components
A critic which sends the neural network a
reinforcement signal whose value at any time k,
is a measure of the “goodness” of the
behaviour of the process at that point of time.
A learning procedure in which the network
updates its parameters—that determine its
actions—based on this coarse information.
The generation of another action, and the
subsequent repetition of the above two
operations.

Architecture of ReinforcementArchitecture of Reinforcement
Learning NetworksLearning Networks

NonassociativeNonassociative Reinforcement Reinforcement
LearningLearning

Extensively studied as a part of learning automata theory
Assume that the learning system has m possible actions
which we denote by αi , i = 1…m.
The effect of these actions on the binary (or bipolar)
success–failure reinforcement signal can be modelled as a
collection of probabilities which are denoted by Pi—which
is the probability of success given that the learning
system generated an action αi.
Objective: Maximize the probability of receiving a
“success”— perform an action αj such that the probability
Pj = max (Pi), i = 1…m.

Associative Reinforcement LearningAssociative Reinforcement Learning
Assume that at time instant k stimulus vector Xkbuffers the system.
System selects an action ak = αj through a procedure
that usually depends on Xk.
Upon execution of this action, the critic provides its
reinforcement signals: “success” with probability Pj (Xk)and “failure” with probability 1 − Pj (Xk).
Objective: Maximize the success probability—at all
subsequent time instants k the learning system
executes action ak = αj , such that Pj (Xk) = max (Pi(Xk))
i = 1…m.

Associative Reinforcement Learning Associative Reinforcement Learning
RulesRules

Consider the j th neuron in a
field that receives an input
stimulus vector Xk = (x 0k, . . . ,
xn

k) at time k in addition to the
critic’s reinforcement signal,
rk.
Let Wk = (w0j

k, . . . ,wnj
k) and ak

= sj
k respectively denote the

neuronal weight vector and
action (neuron signal), and let
yj

k denote the neuronal
activation at time k.

Associative Search UnitAssociative Search Unit
Extension of the Hebbian learning rule.
Neuron signal function is assumed to be a
probabilistic function of its activation.

where ∑= i
k
i

k
ij

k
j xwy

Associative Search Neuron Weight Associative Search Neuron Weight
UpdatedUpdated

This is essentially the Hebbian learning rule with the
reinforcement signal acting as an additional modulatory
factor.
∆Wk = ηrksj

k−τXk−τ where we assume that the critic takes a
(discrete) time τ to evaluate the output action, and rk �
{1,−1} such that +1 denotes a success and −1 a failure.
As before, η> 0 is the learning rate.
The interpretation of this rule is as follows:

if the neuron fires a signal sj
k = +1 in response to an input

Xk, and this action is followed by “success”, then change
the weights so that the neuron will be more likely to fire
a +1 signal in the presence of Xk.

The converse is true for failure reinforcement.

Selective BootstrappingSelective Bootstrapping
The neuron signal sj

k � {0, 1} is computed as the
deterministic threshold of the activation, yj

k.
It receives a reinforcement signal, rk, and updates its
weights according to a selective bootstrap rule:

The reinforcement signal rk simply evaluates sj
k.

When sj
k produces a “success”, the LMS rule is applied

with a desired value sj
k

when sj
k produces a “failure”, the LMS rule is applied with

a desired value 1 − sj
k.

positive bootstrap adaptation

negative bootstrap adaptation

Associative RewardAssociative Reward––Penalty NeuronsPenalty Neurons
The ARP neuron combines stochasticity with
selective bootstrapping.

E[sj
k] = (+1)P(yj

k) + (−1)1 − P(yj
k)= tanh βyj

k

Asymmetry is important: asymptotic performance
improves as λ approaches zero.
If binary rather than bipolar neurons are used, the
−sj

k in the penalty case is replaced by 1 − sj
k.

E[sj
k] then represents a probability of getting a 1.

Reinforcement Learning NetworksReinforcement Learning Networks
Networks of ARP neurons have been used successfully in both
supervised and associative reinforcement learning tasks in
feedforward architectures.
Supervised learning:

output layer neurons learn as in standard error backpropagation
hidden layer neurons learn according to the ARP rule.
the reinforcement signal is defined to increase with a decrease
in the output error.
Hidden neurons learn simultaneously using this reinforcement
signal.

If the entire network is involved in an associative
reinforcement learning task, then all the neurons which are
ARP neurons receive a common reinforcement signal.

self-interested or hedonistic neurons
attempt to achieve a global purpose through individual
maximization of the reinforcement signal r.

Observations on Reinforcement Observations on Reinforcement
LearningLearning

A critical aspect of reinforcement learning is its
stochasticity.
A critic is an abstract process model employed to evaluate
the actions of learning networks.
A reinforcement signal need not be just a two-state
success/failure signal. It can be a signal that takes on real
values in which case the objective of learning is to
maximize its expected value.
The critic’s signal does not suggest which action is the
best; it is only evaluative in nature. No error gradient
information is available, and this is an important aspect in
which reinforcement learning differs from supervised
learning.

Observations on Reinforcement Observations on Reinforcement
Learning (contd.)Learning (contd.)

There must be a variety in the process that generates
outputs.

Permits the varied effect of alternative outputs to be
compared following which the best can be selected.
Behavioural variety is referred to as exploration
Randomness plays an important role.

Involves a trade-off between exploitation and exploration
Network learning mechanism has to exploit what it has
already learnt to obtain a consistently high success rate
At the same time it must explore the unknown in order to
learn more.
These are conflicting requirements, and reinforcement
learning algorithms need to carefully balance them.

