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Supervised Learning Supervised Learning 
II:II:
BackpropagationBackpropagation and and 
BeyondBeyond



Multilayered Network ArchitecturesMultilayered Network Architectures

Linear neuron Sigmoidal neuron

Input layer Hidden layer Output layer



Approximation and GeneralizationApproximation and Generalization
What kind of 
network is required 
to learn with 
sufficient accuracy a 
function that is 
represented by a 
finite data set?
Does the trained 
network predict 
values correctly on 
unseen inputs?
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Function Described by Discrete Function Described by Discrete 
DataData

Assume a set of Q 
training vector pairs: 
T = (Xk,Dk) k=1…Q  
Xk � Rn, Dk � Rp, 
where Dk is a vector 
response desired 
when input Xk is 
presented as input 
to the network.
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Supervised Learning ProcedureSupervised Learning Procedure

Error information fed back for network adaptation

ErrorSkXk

DxNeural Network



BackpropagationBackpropagation Weight Update Weight Update 
ProcedureProcedure
1. Select a pattern Xk from the training set T present it to 

the network.
2. Forward Pass: Compute activations and signals of input, 

hidden and output neurons in that sequence.
3. Error Computation: Compute the error over the output 

neurons by comparing the generated outputs with the 
desired outputs.

4. Compute Weight Changes: Use the error to compute the 
change in the hidden to output layer weights, and the 
change in input to hidden layer weights such that a global 
error measure gets reduced.



BackpropagationBackpropagation Weight Update Weight Update 
ProcedureProcedure
5. Update all weights of the network.

6. Repeat Steps 1 through 5 until the global error 
falls below a predefined threshold.



Square Error FunctionSquare Error Function
The instantaneous summed squared error εk is 
the sum of the squares of each individual 
output error ej

k, scaled by one-half:



Error SurfaceError Surface



Gradient Descent ProcedureGradient Descent Procedure



Recall: Gradient Descent Update Recall: Gradient Descent Update 
Equation Equation 

It follows logically therefore, that the weight 
component should be updated in proportion 
with the negative of the gradient as follows:



Neuron Signal FunctionsNeuron Signal Functions
Input layer neurons are 
linear.

Hidden and output layer 
neurons are sigmoidal.

A training data set is 
assumed to be given 
which will be used to 
train the network.



Notation for Notation for BackpropagationBackpropagation
Algorithm DerivationAlgorithm Derivation



The General Idea Behind The General Idea Behind 
Iterative Training…Iterative Training…

Employ the gradient of the pattern error in order 
to reduce the global error over the entire training 
set.
Compute the error gradient for a pattern and use 
it to change the weights in the network.
Such weight changes are effected for a sequence 
of training pairs (X1,D1), (X2,D2), . . . , (Xk,Dk), . . .
picked from the training set.
Each weight change perturbs the existing neural 
network slightly, in order to reduce the error on 
the pattern in question.



Square Error Performance Square Error Performance 
FunctionFunction

The kth training pair (Xk,Dk) then defines the 
instantaneous error:

Ek = Dk − S(Yk) where 
Ek = (e1

k, . . . , ep
k)

= (d1
k − S(y1

k ), . . . , dp
k − S(yp

k))
The instantaneous summed squared error Ek is 
the sum of the squares of each individual 
output error ej

k, scaled by one-half:



The Difference Between Batch and The Difference Between Batch and 
Pattern UpdatePattern Update



Derivation of BP Algorithm:Derivation of BP Algorithm:
Forward PassForward Pass--Input LayerInput Layer



Derivation of BP Algorithm:Derivation of BP Algorithm:
Forward PassForward Pass--Hidden LayerHidden Layer



Derivation of BP Algorithm:Derivation of BP Algorithm:
Forward PassForward Pass--Output LayerOutput Layer



Recall the Gradient Descent Recall the Gradient Descent 
Update Equation Update Equation 

A weight gets 
updated based on 
the negative of the 
error gradient with 
respect to the 
weight



Derivation of BP Algorithm:Derivation of BP Algorithm:
Computation of GradientsComputation of Gradients



Derivation of BP Algorithm:Derivation of BP Algorithm:
Computation of GradientsComputation of Gradients



Derivation of BP Algorithm:Derivation of BP Algorithm:
Computation of GradientsComputation of Gradients



Derivation of BP Algorithm:Derivation of BP Algorithm:
Computation of GradientsComputation of Gradients



Derivation of BP Algorithm:Derivation of BP Algorithm:
Computation of GradientsComputation of Gradients



Generalized Delta Rule: Generalized Delta Rule: MomentumMomentum
Increases the rate of learning while 
maintaining stability



How Momentum WorksHow Momentum Works
Momentum should be less than 1 
for convergent dynamics.
If the gradient has the same 
sign on consecutive iterations 
the net weight change increases 
over those iterations 
accelerating the descent. 
If the gradient has different 
signs on consecutive iterations 
then the net weight change 
decreases over those iterations 
and the momentum decelerates 
the weight space traversal. This 
helps avoid oscillations.



Derivation of BP Algorithm:Derivation of BP Algorithm:
Finally…!Finally…!



BackpropagationBackpropagation Algorithm:Algorithm:
Operational SummaryOperational Summary



BackpropagationBackpropagation Algorithm:Algorithm:
Operational Operational Summary(contdSummary(contd.).)



HandHand--worked Exampleworked Example



Forward Pass 1/Backprop Pass 1Forward Pass 1/Backprop Pass 1



Weight Changes: Pass 1Weight Changes: Pass 1



Network NNetwork N22 after first Iterationafter first Iteration



Forward Pass 2/Backprop Pass 2Forward Pass 2/Backprop Pass 2



Weight Changes: Pass 2Weight Changes: Pass 2



Network NNetwork N33 after second Iterationafter second Iteration



MATLAB Simulation Example 1MATLAB Simulation Example 1
Two Dimensional XOR ClassifierTwo Dimensional XOR Classifier

Specifying a 0 or 1 desired 
value does not make sense 
since a sigmoidal neuron can 
generate a 0 or 1 signal only 
at an activation value −∞ or ∞. 
So it is never going to quite 
get there. 
The values 0.05, 0.95 are 
somewhat more reasonable 
representatives of 0 and 1. 
Note that the inputs can still 
be 0 and 1 but the desired 
values must be changed 
keeping in mind the signal 
range.



Generalization Surface, Grayscale Generalization Surface, Grayscale 
Map of the Network ResponseMap of the Network Response



MATLAB Simulation 2:MATLAB Simulation 2:
Function ApproximationFunction Approximation



MATLAB Simulation 2:MATLAB Simulation 2:
Error Error vsvs EpochsEpochs
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MATLAB Simulation 2:MATLAB Simulation 2:
Simulation SnapshotsSimulation Snapshots



MATLAB Simulation 2:MATLAB Simulation 2:
Error Histogram and Error MeshError Histogram and Error Mesh



MATLAB Code for MATLAB Code for BackpropBackprop
pattern=[0.1 0.1  0.1

0.1 .95 .95
.95 0.1 .95
.95 .95 0.1];

eta = 1.0;  % Learning rate
alpha = 0.7; % Momentum
tol = 0.001; % Error tolerance
Q = 4;   % Total no. of the patterns to be input
n = 2; q = 2; p = 1; % Architecture
Wih = 2 * rand(n+1,q) - 1; % Input-hidden weight matrix
Whj = 2 * rand(q+1,p) - 1; % Hidden-output weight matrix
DeltaWih = zeros(n+1,q); % Weight change matrices
DeltaWhj = zeros(q+1,p);
DeltaWihOld = zeros(n+1,q);
DeltaWhjOld = zeros(q+1,p);



MATLAB Code for MATLAB Code for BackpropBackprop -- 22
Si = [ones(Q,1) pattern(:,1:2)]; % Input signals
D = pattern(:,3); % Desired values
Sh = [1 zeros(1,q)]; % Hidden neuron signals
Sy = zeros(1,p); % Output neuron signals
deltaO = zeros(1,p); % Error-slope product at output
deltaH = zeros(1,q+1); % Error-slope product at hidden
sumerror = 2*tol; % To get in to the loop
while (sumerror > tol) % Iterate
sumerror = 0;
for k = 1:Q

Zh = Si(k,:) * Wih; % Hidden activations
Sh = [1 1./(1 + exp(-Zh))]; % Hidden signals
Yj = Sh * Whj; % Output activations
Sy = 1./(1 + exp(-Yj)); % Output signals
Ek = D(k) - Sy; % Error vector
deltaO = Ek .* Sy .* (1 - Sy); % delta output



MATLAB Code for MATLAB Code for BackpropBackprop -- 3 3 
for h = 1:q+1

DeltaWhj(h,:) = deltaO * Sh(h); % Delta W:hidden-output
end
for h = 2:q+1 % delta hidden

deltaH(h)=(deltaO*Whj(h,:)’)*Sh(h)*(1-Sh(h));
end
for i = 1:n+1 % Delta W:input-hidden

DeltaWih(i,:) = deltaH(2:q+1) * Si(k,i);
end % Update weights
Wih = Wih + eta * DeltaWih + alpha * DeltaWihOld;
Whj = Whj + eta * DeltaWhj + alpha * DeltaWhjOld;
DeltaWihOld = DeltaWih; DeltaWhjOld = DeltaWhj; % Store changes
sumerror = sumerror + sum(Ek.ˆ2); % Compute error

end
sumerror %Print epoch error

end



Practical Considerations:Practical Considerations:
Pattern or Batch Mode TrainingPattern or Batch Mode Training

Pattern Mode:
Present a single pattern
Compute local gradients
Change the network weights

Given Q training patterns {Xi,Di}i=1
Q , and some initial 

neural network N0, pattern mode training generates a 
sequence of Q neural networks N1, . . . ,NQ over one 
epoch of training. 
Batch Mode (true gradient descent) :

Collect the error gradients over an entire epoch
Change the weights of the initial neural network 

N0 in one shot. 



Practical Considerations:Practical Considerations:
When Do We Stop Training?When Do We Stop Training?

1. Compare absolute value of squared error averaged over one epoch, Eav, 
with a training tolerance, typically 0.01 or as low as 0.0001. 

2. Alternatively use the absolute rate of change of the mean squared error 
per epoch. 

3. Stop the training process if the Euclidean norm of the error gradient 
falls below a sufficiently small threshold. (Requires computation of the 
gradient at the end of each epoch.)

4. Check the generalization ability of the network. The network generalizes 
well if it is able to predict correct or near correct outputs for unseen 
inputs.

Partition the data set T into two subsets: Ttraining (used for estimation) and 
Ttest (used for evaluation of the network)
Ttraining is divided into Tlearning and Tvalidation. (Tvalidation might comprise 20 − 30 
per cent of the patterns in Ttraining.
Use Tlearning to train the network using backpropagation. 
Evaluate network performance at the end of each epoch using Tvalidation. 
Stop the training process when the error on Tvalidation starts to rise.  



Practical Considerations:Practical Considerations:
Use a Bipolar Signal FunctionUse a Bipolar Signal Function

Introducing a bipolar signal function such as the 
hyperbolic tangent function can cause a significant 
speed up in the network convergence. 
Specifically, S(x) = a tanh(λx) with a = 1.716 and λ 
= 0.66 being suitable values. 
The use of this function comes with the added 
advantage that the range of valid desired signals 
extends to [−1 + ε, 1 − ε] where ε > 0.



Practical Considerations:Practical Considerations:
Weight InitializationWeight Initialization

Choose small random values within some interval [−ε, +ε]. (Identical 
initial values can lead to network paralysis—the network learns 
nothing.)
Avoid very small ranges of weight randomization—may lead to very 
slow learning initially.
Incorrect choice of weights might lead to network saturation where 
weight changes are almost negligible over consecutive epochs. 

May be incorrectly interpreted as a local minimum.
Signal values are close to the 0 or 1; signal derivatives are 
infinitesimally small.
Weight changes are negligibly small. 
Small weight changes allow the neuron to escape from incorrect 
saturation only after a very long time.
Randomization of network weights helps avoid these problems.

For bipolar signal functions it is useful to randomize weights 
depending on individual neuron fan-in, fi : randomized in the interval 
(−2.4/fi , 2.4/fi )



Practical Considerations:Practical Considerations:
Check the Input and Target RangesCheck the Input and Target Ranges

Given a logistic signal function which ranges in the interval 
(0,1) the desired outputs of patterns in the entire training 
set should lie in an interval [0 + ε, 1 − ε] where ε > 0 is some 
small number.
Desired values of 0 and 1 causes weights to grow increasingly 
large in order to generate these limiting values of the output.
To generate a 0 and 1 requires a −∞ or ∞ activation which can 
be accomplished by increasing the values of weights.
Algorithm cannot be expected to converge if desired outputs 
lie outside the interval [0,1].
If one were to use a hyperbolic tangent signal function with 

the range [−1.716,+1.716] , then target values of −1, 0 or +1 
would be perfectly acceptable.



Practical Considerations:Practical Considerations:
Adjusting Learning RatesAdjusting Learning Rates

For small learning rates, convergence to the local minimum in 
question is guaranteed but may lead to long training times. 
If network learning is non-uniform, and we stop before the network 
is trained to an error minimum, some weights will have reached their 
final “optimal” values; others may not have.

In such a situation, the network might perform well on some patterns 
and very poorly on others. 

If we assume that the error function can be approximated by a 
quadratic then we can make the following observations. 

An optimal learning rate reaches the error minimum in a single learning 
step. 
Rates that are lower take longer to converge to the same solution. 
Rates that are larger but less than twice the optimal learning rate 
converge to the error minimum but only after much oscillation. 
Learning rates that are larger than twice the optimal value will diverge 
from the solution.



Practical Considerations:Practical Considerations:
Selection of a Network ArchitectureSelection of a Network Architecture

A three-layered network can approximate any continuous 
function. 
Problem with multilayered nets using one hidden layer:

neurons tend to interact with each other globally
interactions make it difficult to generate approximations of 
arbitrary accuracy.

With two hidden layers the curve-fitting process is easier: 
The first hidden layer extracts local features of the 
function (as binary threshold neurons partition the input 
space into regions.) 
Global features are extracted in the second hidden layer.



Practical Considerations:Practical Considerations:
Cross ValidationCross Validation

Divide the data set into a training set Ttraining and 
a test set Ttest .
Subdivide Ttraining into two subsets: one to train 
the network Tlearning, and one to validate the 
network Tvalidation.
Train different network architectures on Tlearning
and evaluate their performance on Tvalidation.
Select the best network.
Finally, retrain this network architecture on 
Ttraining.
Test for generalization ability using Ttest.



BackpropagationBackpropagation: : 
TwoTwo--Spirals ProblemSpirals Problem

Solved by Lang and 
Witbrock 2-5-5-5-1 
architecture 138 
weights.
In the Lang–Witbrock
network each layer of 
neurons is connected 
to every succeeding 
layer.
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Structure Growing AlgorithmsStructure Growing Algorithms
Approach 1:

Starts out with a large number of weights in the 
network and gradually prunes them. 
Idea: eliminate weights that are least important. 
Examples: Optimal Brain Damage, Optimal Brain 
Surgeon, Hinton weight decay procedure.

Approach 2:
Starts out with a minimal architecture which is made 
to grow during training. 
Examples: Tower algorithm, Pyramid algorithm, cascade 
correlation algorithm.



Structure Growing Algorithms: Structure Growing Algorithms: 
Tower AlgorithmTower Algorithm

Train a single TLN using the pocket learning algorithm with a ratchet.
If there are n inputs, we have to train n + 1 weights.

Freeze the weights of the TLN.
Now add a new TLN to the system.

This TLN gets all the original n inputs, as well as an additional input from the 
first TLN trained.

Train the n + 2 weights of this TLN using the pocket learning algorithm with 
ratchet.
Continue this process until no further improvement in classification 
accuracy is achieved.
Freeze the weights of the TLN.

Each added TLN is guaranteed to correctly classify a greater number of input 
patterns

The tower algorithm is guaranteed to classify linearly non-separable 
pattern sets with an arbitrarily high probability provided

enough TLNs are added
enough training iterations are provided to train each incrementally added TLN.



Structure Growing Algorithms: Structure Growing Algorithms: 
Pyramid AlgorithmPyramid Algorithm

Similar to the tower algorithm
Each added TLN receives inputs from the n original 
inputs
The added TLN receives inputs from all previously 
added TLNs. 
Training is done using the pocket algorithm with 
ratchet.



Structure Growing Algorithms: Structure Growing Algorithms: 
Cascade Correlation AlgorithmCascade Correlation Algorithm

Assume a minimal network structure: n input neurons; p output neurons 
with full feedforward connectivity, the requisite bias connections, and 
no hidden neurons.

This network is trained using backpropagation learning (or the 
Quickprop algorithm) until no further reduction in error takes place. 
Errors at output neurons are computed over the entire pattern set.
Next, a single hidden neuron is added. This neuron receives n + 1 inputs 
including the bias and is not connected to the p output neurons. 
The weights of this hidden neuron are adjusted using BP or Quickprop
The goal of training is to maximize the correlation C  between the 
signal of the hidden neuron and the residual output error.



QuickpropQuickprop: Fast Relative of : Fast Relative of 
BackpropBackprop

The slope of the error 
function is thus linear. 
The algorithm pushes the 
weight wij directly to a value 
that minimizes the parabolic 
error. 
To compute this weight, we 
require the previous value of 
the gradient ∂E/∂wij

k−1 and the 
previous weight change.

Works with second order error derivative information instead of only 
the usual first order gradients. 
Based on two “risky” assumptions:

The error function E is a parabolic function of any weight wij .
The change in the slope of the error curve is independent of other 
concurrent weight changes.



Universal Function ApproximationUniversal Function Approximation
Kolmogorov proved that any continuous 
function f defined on an n-dimensional 
cube is representable by sums and 
superpositions of continuous functions of 
exactly one variable:



Universal Approximation TheoremUniversal Approximation Theorem



Applications of BP: Steering Applications of BP: Steering 
Autonomous VehiclesAutonomous Vehicles

The primary objective is to steer a robot 
vehicle like Carnegie Mellon University’s 
(CMU) Navlab, which is equipped with 
motors on the steering wheel, brake and 
accelerator pedal thereby enabling 
computer control of the vehicles’ 
trajectory. 



Applications of BP: Steering Applications of BP: Steering 
Autonomous VehiclesAutonomous Vehicles--ALVINNALVINN

ALVINN 
(autonomous land vehicle in a neural network)



ALVINN Network ArchitectureALVINN Network Architecture
Input to the system is a 30 × 32 neuron “retina” 
Video images are projected onto the retina. 
Each of these 960 input neurons is connected to four hidden 
layer neurons which are connected to 30 output neurons. 
Output neurons represent different steering directions—the 
central neuron being the “straight ahead” and the first and last
neurons denoting “sharp left” and “sharp right” turns of 20 m 
radius respectively.
To compute an appropriate steering angle, an image from a video 
camera is reduced to 30 × 32 pixels and presented to the 
network.
The output layer activation profile is translated to a steering 
command using a center of mass around the hill of activation 
surrounding the output neuron with the largest activation.
Training of ALVINN involves presentation of video images as a 
person drives the vehicle using the steering angle as the desired 
output.



CMU NAVLAB and ALVINNCMU NAVLAB and ALVINN
ALVINN runs on two SUNSPARC stations on board 
Navlab and training on the fly takes about two 
minutes. 
During this time the vehicle is driven over a 1/4 to 
1/2 mile stretch of the road and ALVINN is 
presented about 50 images, each transformed 15 
times to generate 750 images.
The ALVINN system successfully steers NAVLAB in 
a variety of weather and lighting conditions. With the 
system capable of processing 10 images/second 
Navlab can drive at speeds up to 55 mph, five times 
faster than any other connectionist system. 
On highways, ALVINN has been trained to navigate 
at up to 90 mph!



Reinforcement Learning:Reinforcement Learning:
The Underlying PrincipleThe Underlying Principle

If an action of a system is followed by a 
satisfactory response, then strengthen the 
tendency to produce that action.

Evaluate the success and failure of a neuron to 
produce a desired response. 

If success: encourage the neuron to respond in the 
same way by supplying a reward
Otherwise supply a penalty

Requires the presence of an external critic
that evaluates the response within an 
environment.



Types of Reinforcement LearningTypes of Reinforcement Learning
Reinforcement learning algorithms 
generally fall into one of three 
categories: 

Non-associative
Associative
Sequential



Three Basic ComponentsThree Basic Components
A critic which sends the neural network a 
reinforcement signal whose value at any time k, 
is a measure of the “goodness” of the 
behaviour of the process at that point of time. 
A learning procedure in which the network 
updates its parameters—that determine its 
actions—based on this coarse information.
The generation of another action, and the 
subsequent repetition of the above two 
operations.



Architecture of ReinforcementArchitecture of Reinforcement
Learning NetworksLearning Networks



NonassociativeNonassociative Reinforcement Reinforcement 
LearningLearning

Extensively studied as a part of learning automata theory
Assume that the learning system has m possible actions 
which we denote by αi , i = 1…m.
The effect of these actions on the binary (or bipolar) 
success–failure reinforcement signal can be modelled as a 
collection of probabilities which are denoted by Pi—which 
is the probability of success given that the learning 
system generated an action αi.
Objective: Maximize the probability of receiving a 
“success”— perform an action αj such that the probability
Pj = max ( Pi ), i = 1…m.



Associative Reinforcement LearningAssociative Reinforcement Learning
Assume that at time instant k stimulus vector Xkbuffers the system.
System selects an action ak = αj through a procedure 
that usually depends on Xk. 
Upon execution of this action, the critic provides its 
reinforcement signals: “success” with probability Pj (Xk)and “failure” with probability 1 − Pj (Xk).
Objective: Maximize the success probability—at all 
subsequent time instants k the learning system 
executes action ak = αj , such that Pj (Xk) = max (Pi(Xk))  
i = 1…m.



Associative Reinforcement Learning Associative Reinforcement Learning 
RulesRules

Consider the j th neuron in a 
field that receives an input 
stimulus vector Xk = (x 0k, . . . , 
xn

k) at time k in addition to the 
critic’s reinforcement signal, 
rk. 
Let Wk = (w0j 

k, . . . ,wnj
k ) and ak

= sj
k respectively denote the 

neuronal weight vector and 
action (neuron signal), and let 
yj

k denote the neuronal 
activation at time k.



Associative Search UnitAssociative Search Unit
Extension of the Hebbian learning rule.
Neuron signal function is assumed to be a 
probabilistic function of its activation.

where ∑= i
k
i

k
ij

k
j xwy



Associative Search Neuron Weight Associative Search Neuron Weight 
UpdatedUpdated

This is essentially the Hebbian learning rule with the 
reinforcement signal acting as an additional modulatory
factor.
∆Wk = ηrksj

k−τXk−τ where we assume that the critic takes a 
(discrete) time τ to evaluate the output action, and rk � 
{1,−1} such that +1 denotes a success and −1 a failure. 
As before, η> 0 is the learning rate. 
The interpretation of this rule is as follows: 

if the neuron fires a signal sj
k = +1 in response to an input 

Xk, and this action is followed by “success”, then change 
the weights so that the neuron will be more likely to fire 
a +1 signal in the presence of Xk.

The converse is true for failure reinforcement.



Selective BootstrappingSelective Bootstrapping
The neuron signal sj

k � {0, 1} is computed as the 
deterministic threshold of the activation, yj

k. 
It receives a reinforcement signal, rk, and updates its 
weights according to a selective bootstrap rule:

The reinforcement signal rk simply evaluates sj
k.

When sj
k produces a “success”, the LMS rule is applied 

with a desired value sj
k

when sj
k produces a “failure”, the LMS rule is applied with 

a desired value 1 − sj
k. 

positive bootstrap adaptation

negative bootstrap adaptation



Associative RewardAssociative Reward––Penalty NeuronsPenalty Neurons
The ARP neuron  combines stochasticity with 
selective bootstrapping.

E[sj
k] = (+1)P(yj

k ) + (−1)1 − P(yj
k)= tanh βyj

k

Asymmetry is important: asymptotic performance 
improves as λ approaches zero. 
If binary rather than bipolar neurons are used, the 
−sj

k in the penalty case is replaced by 1 − sj
k.

E[sj
k] then represents a probability of getting a 1.



Reinforcement Learning NetworksReinforcement Learning Networks
Networks of ARP neurons have been used successfully in both 
supervised and associative reinforcement learning tasks in 
feedforward architectures.
Supervised learning: 

output layer neurons learn as in standard error backpropagation
hidden layer neurons learn according to the ARP rule. 
the reinforcement signal is defined to increase with a decrease 
in the output error.  
Hidden neurons learn simultaneously using this reinforcement 
signal. 

If the entire network is involved in an associative 
reinforcement learning task, then all the neurons which are 
ARP neurons receive a common reinforcement signal. 

self-interested or hedonistic neurons 
attempt to achieve a global purpose through individual 
maximization of the reinforcement signal r.



Observations on Reinforcement Observations on Reinforcement 
LearningLearning

A critical aspect of reinforcement learning is its 
stochasticity. 
A critic is an abstract process model employed to evaluate 
the actions of learning networks.
A reinforcement signal need not be just a two-state 
success/failure signal. It can be a signal that takes on real 
values in which case the objective of learning is to 
maximize its expected value.
The critic’s signal does not suggest which action is the 
best; it is only evaluative in nature. No error gradient 
information is available, and this is an important aspect in 
which reinforcement learning differs from supervised 
learning.



Observations on Reinforcement Observations on Reinforcement 
Learning (contd.)Learning (contd.)

There must be a variety in the process that generates 
outputs. 

Permits the varied effect of alternative outputs to be 
compared following which the best can be selected. 
Behavioural variety is referred to as exploration
Randomness plays an important role.

Involves a trade-off between exploitation and exploration
Network learning mechanism has to exploit what it has 
already learnt to obtain a consistently high success rate
At the same time it must explore the unknown in order to 
learn more. 
These are conflicting requirements, and reinforcement 
learning algorithms need to carefully balance them.


