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Statistical Framework

The natural framework for studying the
design and capabilities of pattern
classification machines is statistical

Nature of information available for
decision making is probabilistic




Feedforward Neural Networks

Have a natural propensity for performing
classification tasks

Solve the problem of recognition of patterns in
the input space or pattern space

Pattern recognition:

B Concerned with the problem of decision making
based on complex patterns of information that are
probabilistic in nature.

Network outputs can be shown to find proper

interpretation of conventional statistical

pattern recognition concepts.




Pattern Classification

Linearly separable pattern sets:
B only the simplest ones

Iris data: classes overlap

Important issue:

B Find an optimal placement of the
discriminant function so as to minimize the
number of misclassifications on the given
data set, and simultaneously minimize the
probability of misclassification on unseen
patterns.




Notion of Prior

The prior probability P(C,) of a pattern
belonging to class C, is measured by the
fraction of patterns in that class
assuming an infinite number of patterns
in the training set.

Priors influence our decision to assign an
unseen pattern to a class.




Assignment Without Information

In the absence of all other information:
Experiment:

B Inalarge sample of outcomes of a coin toss
experiment the ratio of Heads to Tails is
60:40

Is the coin biased?

Classify the next (unseen) outcome and
minimize the probability of mis-
classification

B (Natural and safe) Answer: Choose Heads!




Introduce Observations

Can do much better with an observation...

Suppose we are allowed to make a single
measurement of a feature x of each
pattern of the data set.

x is assighed a set of discrete values
{x, x2, .., x4}




Joint and Conditional Probability

Joint probability P(C, x') that x' belongs
to C, is the fraction of total patterns
that have value x' while belonging to
class C,

Conditional probability P(x!|C,) is the
fraction of patterns that have value x
given only patterns from class C,




Joint Probability = Conditional
Probability x Class Prior

Number of patterns with e 1P ne
value x! in class C, > P x| C X1 C % Ck
Total number of patterns —> n n Cr n
Number of
patterns in class C,

P(Ci.x') = P(x'[C) x P(Cy)
N — e’ N
joint class conditional prior




Posterior Probability: Bayes’

Theorem

Note: P(C,, x') = P(x!, C,)
P(C,, x") is the posterior probability: probability

that feature value x' belongs to class C,
P(x', Cr) = P(Cylx")P(x')
= P(x'|C)P(Ck) = P(C. x")

Bayes' Theorem

P(Cylx") =

P(x'|Cy)P(Cy)

P(x")




Bayes' Theorem and Classification

Bayes' Theorem provides the key to
classifier design:

B Assign pattern x' fo class C, for which the
posterior is the highest!

Note therefore that all posteriors must
sum to one ZP(G ) =1

k=1

C
And P(x'y =) Pu'|CHPEY)




Bayes' Theorem for Continuous
Variables

Probabilities for discrete intervals of a
feature measurement are then replaced
by probability density func’nons p(x)

Parzrsx= [ pwd po= meek)P(ek)

p(x|Cr) P(Cy)

P(Cilv) = = =




Gaussian Distributions
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Example of Gaussian Distribution

Two classes are assumed 1o be
distributed about means 1.5 and 3
respectively, with equal variances 0.25.
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Example of Gaussian Distribution
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Extension to n-dimensions

The probability density function
expression extends to the following

B l I S IS SN S
p(X) = NGE exp( (X = DK X))

Mean X = E[X]
1 Covariance matrix
K=E[X-X)X-X)]




Covariance Matrix and Mean

Covariance matrix

B describes the shape and orientation of the
distribution in space

Mean

B describes the translation of the scatter
from the origin




Covariance Matrix and Data
Scatters
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Covariance Matrix and Data
Scatters
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Covariance Matrix and Data
Scatters
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Probability Contours

Contours of the probability density
function are loci of equal Mahalanobis
distance

A’ =X-X) KX -X)




MATLAB Code to Generate
Probability Contours

mu = [2 2]; p = exp(-0.5*mahadist)./sqrt((2*pi)"d
alphal= 0.1; *det(covar)).
alpha2= 0.8; P = reshape(p, gridres, gridres);
covar = alfhal*[l,l]’*[l,l] +alpha2*[1-  figure;
17*[1,-11 contour(X1, X2, P, 'b");
invcov = inv(covar); hold on
gridres = 30;
min = O; numsamp = 300;
max = b; [eta, lambda] = eig(covar);
data = linspace(min, max, gridres); coeffs = randn(numsamp,
[X1, X2] = meshgrid(data, data); d)*sqrt(lambda);
X = [X1(:), X2(:)1 ——
[n, d] = size(X); data samplle),scnzwcgeffs eta’ + ones(numsamp,
= . %Plot the samples
X = X - ones(n, 1)*mu; -
—— *; * : plot(samples(:,1), samples(:,2), 'k."):
mahadist = sum(((X*invcov).*X), 2); Xlabel(X1)

ylabel('X2")




Classification Decisions with
Bayes' Theorem

Key: Assign X to Class C, such that

P(Cx|X) = max{P(C;|X)}
or, J

p(XICHP(Cr) > p(XICHPC)j) V) #k




Placement of a Decision Boundary

Decision boundary separates the classes
In question
Where do we place decision region

boundaries such that the probability of
misclassification is minimized?




Quantifying the Classification Error

Example: 1-dimension, 2 classes identified by
regions R;, R,

=P(x e R, C,)+P(x eR,, C)

Per'r'or'
o0

Perror = fﬁ p("’|62)P(82)d"’+[ p(”Gl)P(Gl)dk

Place decision boundary such that

B point x lies in R, (decide C,) if p(x|C,)P(C,) >
P(XIC)P(C,)

B point x lies in R, (decide C,) if p(x|C,)P(C,) >
p(x|C)P(Cy)




Optimal Placement of A Decision
Boundary
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Probabilistic Interpretation of a
Neuron Discriminant Function

O

An artificial neuron "
implements the discriminant ;(X) = Z WijXi T Woj
function: =1

= W/ X + wy;
Each of C neurons implements

ITs own discriminant function
for a C-class problem

An arbitrary input vector X is y;(X) = max{y;(X)}
assigned to class C, if neuron /
k has the largest activation




Probabilistic Interpretation of a
Neuron Discriminant Function

An optimal Bayes' classification chooses the
class with maximum posterior probability
P(C;IX)

Discriminant function y, = P(XICJ) P(C))

By, notation re-used for emphasis

Relative magnitudes are important: use any

monotonic function of the probabilities to
generate a new discriminant function

yj(X) =1np(X|C)) +In P(C))




Probabilistic Interpretation of a
Neuron Discriminant Function

Assume an n-dimensional density function
This ylelds
yi(X) = ——(X X)TKA(X - X)) - 11n|K - §1n2n +1n P(C))

Ignore ’rhe constant term, assume that all
covariance matrices are the same:

| ) _ )
¥i(X) == (X — XH)'K'X-X)+mIhP(EC))

_ 1 _ .
Ty-—1 T+-—1
= XK' X —oX;K™'X; +In P(C)

L T
- Wj X + W«




Plotting a Bayesian Decision
Boundary: 2-Class Example

Assume classes C,, C,, and discriminant
functions of the form,

| — Ter_l _ 1 n
yl(X):—E(X—Xl) K] (X—Xl)—Eln|K1|—§1n277—|—1nP(Gl)

1 e Ter_l — 1 n
v (X) = _E(X — X)) K (X — X)) — 5 In |K,| — 7 In27 +In P(C,)

Combine the discriminants y(X) = y,(X) - Y,(X)

New rule:
B Assign X 1o G, if y(X) > O; C, otherwise




Plotting a Bayesian Decision
Boundary: 2-Class Example

This boundary is elliptic

1 AN S 1 N -
}-’(X)ZE(X—XL) K, (X_Xl)_E(X_Xz) K, (X — X»)

1 K] P(C))
4+ —In—— —1In
2 K] P(Cy)

If K, = K, = K then the boundary becomes
linear...




Bayesian Decision Boundary
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Bayesian Decision Boundary
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Cholesky Decomposition of
Covariance Matrix K

Returns a matrix Q such that Q'Q = K
and Q is upper triangular

X-X'K'X-X=X-X"QQ'Xx -X)
=X -X'Q'QH'(x -X)
=X -X"Q Y (x-X"QY)




MATLAB Code to Plot Bayesian
Decision Boundaries

[X Y]=meshgrid(xspace, yspace):
gridpoints=[X(:) Y(:)];
npoints = size(gridpoints, 1);

7 Class conditionals are fo be
stored columnwise

px_C = zeros(npoints, 2);

7 Assuming a 2-dimensional input

normalfact = (2*pi);

fori=1:2

dist = gridpoints-
(ones(npoints,1)*centres(i,:)):

Q = chol(covars(: ,i)):

term = dist*inv(Q);

px_C(: i) = exp(-0.5*sum(term *term,
2)).7(normalfact*prod(diag(Q)));
end
posthum =
(ones(nsamples,1)*priors).*px_C:;
px = sum(postnum, 2);
posteriors = postnum./(px*ones(1, 2));
pl_x = reshape(posteriors(:, 1),
size(X));
2_x = reshape(posteriors(:, 2),
p _Size(x));p (p (. 2)
px_1 = reshape(px_C(:,1), size(X)):
px_2 = reshape(px_C(:,2), size(X));
contour(xrange ,yrange, pl_x,[0.5
o echpe yrange. plxl
contour(xrange, yrange, px_1);
contour(xrange, yrange, px_2):




Interpreting Neuron Signals as
Probabilities: Gaussian Data

Gaussian Distributed Data
2-Class data, K, = K; = K

| ) )
p(X|Cy) = —5(X — ) KX — X))

1
Jay K] Y (
From Bayes' Theorem, we have the
posterior probability

p(X|CHP(C))
p(X|CHPC)) + p(X|C)P(Cy)

P(CjlX) =

i=1,2




Interpreting Neuron Signals as
Probabilities: Gaussian Data

Consider Class 1

p(X|CHPC))
p(X|CHP(C) + p(X|C)P(Cy)
|
14 p(X|Co)P(Cy)
p(X|C)PC)

Sigmoidal neuron ?

P(Ci|X) =




Interpreting Neuron Signals as
Probabilities: Gaussian Data

We substituted

7 p(X|Cy)P(Cy)
| p(X|CHP(C)

or,

. ln[P(X|GL)P(el)}
) p(X|C)P(Cy)

P(Cy)

= In p(X|Cy) — In p(X|C3) + In P(C,)

P(Cy)

v/ _ v\K-lx vTK-!Y | vTK-LX - ln
( . 2 ) 2 ! : 2 2 2 P(ez)

Neuron activation !




Interpreting Neuron Signals as
Probabilities

Bernoulli Distributed Data
Random variable x. takes values 0,1
Bernoulli distribution

p(xi|C) = (Pi)" (1 — Py)' "
Extending this result o an n-dimensional
vector of /ndependent input variables

p(X|Cy) = H(Pfk)'r"(l — Pt
i=1




Interpreting Neuron Signals as
Probabilities: Bernoulli Data

Bayesian discriminant y(X)=npX|Cy) +In P(Ey)

yi(X)=In [H(P;’k)"‘f(l — Pfk)l_xii| + In P(Cy)

=1
= Z[k, In Py + (1 —x;)In(1 — P,;k)] + In P(Cy)
=1

= 3 (In Py —In(1l — Py + 3 In(1 = P+ In P(C)

=1 =1

—

Neuron activation




Interpreting Neuron Signals as
Probabilities: Bernoulli Data

Consider the posterior probability for
class C,

p(X|C)P(C))

P(C1X) =
(C1]X) p(X|el)P(el)+p(X|ez)P(62)
B |
where | PG P(CY)
7] =

p(X|Cy) P(Cy)




Interpreting Neuron Signals as

Probabilities: Bernoulli Data

[ [P =Pt PEn)

=1
7] = ln[’ }
n

[ | P2l = Po)' = P(Cy)
i=1

In P(Cy)
P(C,)




Multilayered Networks

The computational power of neural
networks stems from their multilayered
architecture

B What kind of interpretation can the outputs
of such networks be given?

B Can we use some other (more appropriate)
error function to train such networks?

B Tf so, then with what consequences in
network behaviour?




Likelihood

Assume a training data set T={X,,D }
drawn from a joint p.d.f. p(X,D) defined
on RMP

1 Joint probability or likelihood of T

0
L= H[?(Xk, Dy)
k=1

o
= [ (De1 X0 p(X0)
k=1




Sum of Squares Error Function

Motivated by the concept of maximum
likelihood

Context: neural network solving a classification
or regression problem

Objective: maximize the likelihood function
Alternatively: minimize negative likelihood:

0 O
E=—In L =— Zln p(Di| X) — Zln p(Xy)
k=1 k=1

Drop this
constant




Sum of Squares Error Function

Error function is the o

negative sumof the ._ N~ 5y
log-probabilities of ; " PO
desired outputs

conditioned on inputs

A feedforward neural
network provides a

framework for
modelling p(D|X)




Normally Distributed Data

[0 Decompose the p.d.f. into a product of individual
density functions

P
p(DIX) = [ | pd;1X)
=1

[0 Assume target data is Gaussian distributed
dj = g;j(X) +¢;
O e, is a Gaussian distributed hoise term
O g,(X) is an underlying deterministic function
400 = [ dp@)dd

= E[d;|X]




From Likelihood to Sum Square
Errors

Noise term has zero mean and s.d. o

€;) = cX —
[)( j) i p( 20_2)

2

Neural network expected to provide a model of

g(X) ,
dj ~ fj(X, W)—I—Ej

Since f(X,W) is deterministic p(dJ-IX) = p(<))
dj — fi(X, W))z)

202

p(dj]X) = exp(—
’ 2w o2




From Likelihood to Sum Square
Errors

’ () = £ W)
ZIHH[ V272 exp(— 20 )i|

1 ) p 2
- EZZ(JCJ(X% W)—df) +pQ Ino + % In(27)

k=1 j=1

Neglecting the constant terms yields

| —
™

P

(df = £i(Xi, W)

k=1 j=1




Interpreting Network Signal Vectors

Re-write the sum of squares error function

QO p

825211;0( : Y Y (@ - fi(x, W)))

kljl

1/Q provides averaging, permits replacement
of the summations by integrals

1 P . 1 Q 1 ,
TS

Jj=1 k=1

1 P .
_ Ezf/( — fi(X. W)’ p(X, d;) dX dd,

Jj=1




Interpreting Network Signal Vectors

. P
O Algebrayields . _ %Zf(gf(x) £, W) p(X)dX
j=1

1 P 2
=32 [ (B £ W) pnax
j=1

O Error is minimized when f,(X,W) = E[dJ-IX] for each j.

[0 The error minimization procedure tends to drive the
hetwork map f(X,W) towards the conditional average
E[d; X] of the desired outputs

OO0 At the error minimum, network map approximates the
regression of d conditioned on X!




Numerical Example

[0 Noisy distribution g

of 200 poin'rs 0.9}
distributed about 0.8}
the function 07}
[0 Used to traina 0.6}
neural network Y os}
with 7 hidden 04|
nhodes 0.3}
[0 Response of the 0.2
network is plotted 0.1l : - i
with a continuous | x |

line




Residual Error

[0 The error expression just presented neglected an

integral Tferm shown below
P

| p
E = 5 Z[[(gj(X) — [i(X, W))H([ p(d”X)ddj)p(X)dX

j=1

+ f o (X) p(X)dX}

OO0 If the training environment does manage to reduce the
error on the first integral term in to zero, a residual
error still manifests due to the second integral term




Notes...

The network cannot reduce the error
below the average variance of the target
datal

The results discussed rest on the three
assumptions:
B The data set is sufficiently large

B The network architecture is sufficiently
general to drive the error to zero.

B The error minimization procedure selected
does find the appropriate error minimum.




An Important Point

=
Ll

Ll

Sum of squares error function was derived from
maximum likelihood and Gaussian distributed target data

Using a sum of squares error function for traininga
neural network does not require target data be Gaussian
distributed.

A neural network trained with a sum of squares error
function generates outputs that ﬁrovide estimates of the
average of the target data and the average variance of
target data

Therefore, the specific selection of a sum of squares
error function does not allow us to distinguish between
Gaussian and hon-Gaussian distributed target data which
share the same average desired outputs and average
desired output variances...




Classification Problems

For a C-class classification problem, there will
be C-outputs

Only 1-of-C outputs will be one
Input pattern X, is classified into class J if

J = arg max S(yf)

I<j=C

A more sophisticated approach seeks to
represent the outputs of the network as
posterior probabilities of class memberships.




Advantages of a Probabilistic
Interpretation

Ll

Ll

We make classification decisions that lead to the
smallest error rates.

By actually computing a prior from the network pattern
average, and comparing that value with the knowledge
of a prior calculated from class frequency fractions on
the training set, one can measure how closely the
network is able to model the posterior probabilities.

The network outputs estimate posterior probabilities
from training data in which class priors are naturally
estimated from the training set. Sometimes class priors
will actually differ from those computed from the
training set. A compensation for this difference can be
made easily.




NN Classifers and Square Error
Functions

OO0 Recall: feedforward neural network trained on a
squared error function generates signals that
approximate the conditional average of the desired
Target vectors

O If the error approaches zero,
S0%) = ELd;1X1 = [ d; pld;1x) dd,

0 The probability that desired values take on O or 1 is the
probability of the pattern belonging to that class

C
p(dj|1X) =) 8(d; —8;i) p(Ci| X)
i=1




Network Output = Class Posterior

The j™ output s, is

= p(C;|X)

Class posterior




Relaxing the Gaussian Constraint

Design a new error function

B Without the Gaussian hoise assumption on
the desired outputs

B Retain the ability to interpret the network
outputs as posterior probabilities

B Subject to constraints:
O sighal confinement to (0,1) and
[0 sum of outputs fo 1




Neural Network With A Single
Output

Output s represents Class 1 posterior
Then 1-s represents Class 2 posterior

The probability that we observe a target value
d, on pattern X,

p(dlek) — S;jk(l _ Sk)l—dk

Problem: Maximize the likelihood of observing
the training data set




Cross Entropy Error Function

Maximizing the probability of observing
desired value d, for input X, on each pattern in
-

L|ke||h00d L= 1_[ p(di| X)) = n(kg'k)dk(l _ Sk)l—dk
k k

Convenient fo E— _In L
minimize the negative ( | 1_1)
. . . — —] ("')(k(l _l") d,
log-likelihood, which h 1:[ Sk St

we denote as the _ Z(d"' In sy + (1 —dy) In(1 — Sk))
error. k




Architecture of Feedforward
Network Classifier




Network Training

Using the chain rule (Chapter 6) with the cross
entropy error function

0C

W,
Input - hidden weight derivatives can be found
similarly

kK
C _BkLSh




C-Class Problem

Assume a 1 of C encoding scheme
Network has C outputs

p(C;1Xy) = 5/;

and C
, (f{
p(Dl X0) = | [(s5)"

Jj=1

Likelihood function

L=T1 16"
ko




Modified Error Function

Cross entropy error E=—) ) dins;
function for the C- ko
class case =Y &
k
Minimum value Emin=—2_ D djInd]
ko
Subtracting the E=¢E— Emi
minimum value ensures sk
that the minimum is ==-2.2 . d/ln—
k j J

always zero




Softmax Signal Function

Ensures that

B the outputs of the network are confined to
the interval (0,1) and

B simultaneously all outputs add to 1

k
. ¢ Y

LY

Is a close relative of the sigmoid




Error Derivatives

For hidden-output weights
0Cx

k
8w,,1__j

k ky ok
— _(dj — 3 )S,

The remaining part of the error
backpropagation algorithm remains intact




