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Neural Networks: A Neural Networks: A 
Statistical Pattern Statistical Pattern 
Recognition Recognition 
PerspectivePerspective



Statistical FrameworkStatistical Framework
The natural framework for studying the 
design and capabilities of pattern 
classification machines is statistical
Nature of information available for 
decision making is probabilistic



Feedforward Neural NetworksFeedforward Neural Networks
Have a natural propensity for performing 
classification tasks
Solve the problem of recognition of patterns in 
the input space or pattern space
Pattern recognition:

Concerned with the problem of decision making 
based on complex patterns of information that are 
probabilistic in nature.

Network outputs can be shown to find proper 
interpretation of conventional statistical 
pattern recognition concepts.



Pattern ClassificationPattern Classification
Linearly separable pattern sets:

only the simplest ones
Iris data: classes overlap 
Important issue:

Find an optimal placement of the 
discriminant function so as to minimize the 
number of misclassifications on the given 
data set, and simultaneously minimize the 
probability of misclassification on unseen 
patterns.



Notion of PriorNotion of Prior
The prior probability P(Ck) of a pattern 
belonging to class Ck is measured by the 
fraction of patterns in that class 
assuming an infinite number of patterns 
in the training set.

Priors influence our decision to assign an 
unseen pattern to a class.



Assignment Without InformationAssignment Without Information
In the absence of all other information:
Experiment:

In a large sample of outcomes of a coin toss 
experiment the ratio of Heads to Tails is 
60:40
Is the coin biased?
Classify the next (unseen) outcome and 
minimize the probability of mis-
classification
(Natural and safe) Answer: Choose Heads!



Introduce ObservationsIntroduce Observations
Can do much better with an observation…
Suppose we are allowed to make a single 
measurement of a feature x of each 
pattern of the data set.
x is assigned a set of discrete values 
{x1, x2, …, xd}



Joint and Conditional ProbabilityJoint and Conditional Probability
Joint probability P(Ck,xl) that xl belongs 
to Ck is the fraction of total patterns 
that have value xl while belonging to 
class Ck

Conditional probability P(xl|Ck) is the 
fraction of patterns that have value xl

given only patterns from class Ck



Joint Probability = Conditional Joint Probability = Conditional 
Probability Probability ×× Class PriorClass Prior

Number of patterns with 
value xl in class Ck

Total number of patterns

Number of 
patterns in class Ck



Posterior Probability: Posterior Probability: BayesBayes’ ’ 
TheoremTheorem

Note: P(Ck, xl) = P(xl, Ck)
P(Ck, xl) is the posterior probability: probability 
that feature value xl belongs to class Ck

Bayes’ Theorem



BayesBayes’ Theorem and Classification’ Theorem and Classification

Bayes’ Theorem provides the key to 
classifier design:

Assign pattern xl to class CK for which the 
posterior is the highest!

Note therefore that all posteriors must 
sum to one

And 



BayesBayes’ Theorem for Continuous ’ Theorem for Continuous 
VariablesVariables

Probabilities for discrete intervals of a 
feature measurement are then replaced 
by probability density functions p(x)



Gaussian DistributionsGaussian Distributions
Two-class one 
dimensional Gaussian 
probability density 
function

Distribution Mean and Variance

normalizing factor

variance
mean



Example of Gaussian DistributionExample of Gaussian Distribution
Two classes are assumed to be 
distributed about means 1.5 and 3 
respectively, with equal variances 0.25.



Example of Gaussian DistributionExample of Gaussian Distribution



Extension to nExtension to n--dimensionsdimensions
The probability density function 
expression extends to the following

Mean
Covariance matrix



Covariance Matrix and Mean Covariance Matrix and Mean 
Covariance matrix

describes the shape and orientation of the 
distribution in space

Mean
describes the translation of the scatter 
from the origin



Covariance Matrix and Data Covariance Matrix and Data 
ScattersScatters



Covariance Matrix and Data Covariance Matrix and Data 
ScattersScatters



Covariance Matrix and Data Covariance Matrix and Data 
ScattersScatters



Probability ContoursProbability Contours
Contours of the probability density 
function are loci of equal Mahalanobis
distance



MATLAB Code to Generate MATLAB Code to Generate 
Probability ContoursProbability Contours

p = exp(-0.5*mahadist)./sqrt((2*pi)ˆd 
*det(covar));

P = reshape(p, gridres, gridres);
figure;
contour(X1, X2, P, ’b’);
hold on

numsamp = 300;
[eta, lambda] = eig(covar);
coeffs = randn(numsamp, 

d)*sqrt(lambda);

samples = coeffs*eta’ +  ones(numsamp, 
1)*mu ;

%Plot the samples
plot(samples(:,1), samples(:,2), ’k.’);
xlabel(’X1’)
ylabel(’X2’)

mu = [2 2]; 
alpha1= 0.1;
alpha2= 0.8;
covar = alpha1*[1,1]’*[1,1] + alpha2*[1,-

1]’*[1,-1];
invcov = inv(covar);
gridres = 30; 
min = 0;
max = 5; 
data = linspace(min, max, gridres);
[X1, X2] = meshgrid(data, data);
X = [X1(:), X2(:)]; 
[n, d] = size(X); data

X = X - ones(n, 1)*mu;
mahadist = sum(((X*invcov).*X), 2);



Classification Decisions withClassification Decisions with
BayesBayes’ Theorem’ Theorem

Key: Assign X to Class Ck such that

or,



Placement of a Decision BoundaryPlacement of a Decision Boundary

Decision boundary separates the classes 
in question
Where do we place decision region 
boundaries such that the probability of 
misclassification is minimized?



Quantifying the Classification ErrorQuantifying the Classification Error
Example: 1-dimension, 2 classes identified by 
regions R1, R2

Perror = P(x ∈ R1, C2) + P(x ∈ R2, C1)

Place decision boundary such that 
point x lies in R1 (decide C1) if p(x|C1)P(C1) > 
p(x|C2)P(C2)
point x lies in R2 (decide C2) if p(x|C2)P(C2) > 
p(x|C1)P(C1)



Optimal Placement of A Decision Optimal Placement of A Decision 
BoundaryBoundary

Bayesian Decision 
Boundary:

The point
where the unnormalized
probability density 
functions crossover



Probabilistic Interpretation of a Probabilistic Interpretation of a 
Neuron Neuron DiscriminantDiscriminant FunctionFunction

An artificial neuron 
implements the discriminant
function:

Each of C neurons implements 
its own discriminant function 
for a C-class problem

An arbitrary input vector X is 
assigned to class Ck if neuron 
k has the largest activation



Probabilistic Interpretation of a Probabilistic Interpretation of a 
Neuron Neuron DiscriminantDiscriminant FunctionFunction

An optimal Bayes’ classification chooses the 
class with maximum posterior probability 
P(Cj|X)
Discriminant function yj = P(X|Cj) P(Cj)

yj notation re-used for emphasis
Relative magnitudes are important: use any 
monotonic function of the probabilities to 
generate a new discriminant function



Probabilistic Interpretation of a Probabilistic Interpretation of a 
Neuron Neuron DiscriminantDiscriminant FunctionFunction

Assume an n-dimensional density function
This yields,

Ignore the constant term, assume that all 
covariance matrices are the same:



Plotting a Bayesian Decision Plotting a Bayesian Decision 
Boundary: 2Boundary: 2--Class ExampleClass Example

Assume classes C1, C2, and discriminant
functions of the form,

Combine the discriminants y(X) = y2(X) – Y1(X)
New rule: 

Assign X to C2 if y(X) > 0; C1 otherwise



Plotting a Bayesian Decision Plotting a Bayesian Decision 
Boundary: 2Boundary: 2--Class ExampleClass Example

This boundary is elliptic

If K1 = K2 = K then the boundary becomes 
linear…



Bayesian Decision BoundaryBayesian Decision Boundary



Bayesian Decision BoundaryBayesian Decision Boundary



CholeskyCholesky Decomposition of Decomposition of 
Covariance Matrix KCovariance Matrix K

Returns a matrix Q such that QTQ = K 
and Q is upper triangular



MATLAB Code to Plot Bayesian MATLAB Code to Plot Bayesian 
Decision BoundariesDecision Boundaries

px_C(:,i) = exp(-0.5*sum(term.*term, 
2))./(normalfact*prod(diag(Q)));

end
postnum = 

(ones(nsamples,1)*priors).*px_C;
px = sum(postnum, 2);
posteriors = postnum./(px*ones(1, 2));
p1_x = reshape(posteriors(:, 1), 

size(X));
p2_x = reshape(posteriors(:, 2), 

size(X));
px_1 = reshape(px_C(:,1), size(X));
px_2 = reshape(px_C(:,2), size(X));
contour(xrange,yrange, p1_x,[0.5 

0.5],’k-.’);
contour(xrange, yrange, px_1);
contour(xrange, yrange, px_2);

[X Y]=meshgrid(xspace, yspace);
gridpoints=[X(:) Y(:)];
npoints = size(gridpoints, 1);

% Class conditionals are to be 
stored columnwise

px_C = zeros(npoints, 2);

% Assuming a 2-dimensional input
normalfact = (2*pi);
for i = 1:2
dist = gridpoints-

(ones(npoints,1)*centres(i,:));
Q = chol(covars(:,:,i));
term = dist*inv(Q);



Interpreting Neuron Signals as Interpreting Neuron Signals as 
Probabilities: Gaussian DataProbabilities: Gaussian Data

Gaussian Distributed Data
2-Class data, K2 = K1 = K

From Bayes’ Theorem, we have the 
posterior probability



Interpreting Neuron Signals as Interpreting Neuron Signals as 
Probabilities: Gaussian DataProbabilities: Gaussian Data

Consider Class 1

Sigmoidal neuron ?



Interpreting Neuron Signals as Interpreting Neuron Signals as 
Probabilities: Gaussian DataProbabilities: Gaussian Data

We substituted

or,

Neuron activation !



Interpreting Neuron Signals as Interpreting Neuron Signals as 
ProbabilitiesProbabilities

Bernoulli Distributed Data
Random variable xi takes values 0,1
Bernoulli distribution

Extending this result to an n-dimensional 
vector of independent input variables



Interpreting Neuron Signals as Interpreting Neuron Signals as 
Probabilities: Bernoulli DataProbabilities: Bernoulli Data

Bayesian discriminant

Neuron activation



Interpreting Neuron Signals as Interpreting Neuron Signals as 
Probabilities: Bernoulli DataProbabilities: Bernoulli Data

Consider the posterior probability for 
class C1

where



Interpreting Neuron Signals as Interpreting Neuron Signals as 
Probabilities: Bernoulli DataProbabilities: Bernoulli Data



Multilayered NetworksMultilayered Networks
The computational power of neural 
networks stems from their multilayered 
architecture

What kind of interpretation can the outputs 
of such networks be given?
Can we use some other (more appropriate) 
error function to train such networks?
If so, then with what consequences in 
network behaviour?



LikelihoodLikelihood
Assume a training data set T={Xk,Dk}
drawn from a joint p.d.f. p(X,D) defined 
on ℜn×p

Joint probability or likelihood of T 



Sum of Squares Error FunctionSum of Squares Error Function
Motivated by the concept of maximum 
likelihood
Context: neural network solving a classification 
or regression problem
Objective: maximize the likelihood function
Alternatively: minimize negative likelihood:

Drop this 
constant



Sum of Squares Error FunctionSum of Squares Error Function
Error function is the 
negative sum of the 
log-probabilities of 
desired outputs 
conditioned on inputs

A feedforward neural 
network provides a 
framework for 
modelling p(D|X)



Normally Distributed DataNormally Distributed Data
Decompose the p.d.f. into a product of individual 
density functions

Assume target data is Gaussian distributed

∈j is a Gaussian distributed noise term
gj(X) is an underlying deterministic function



From Likelihood to Sum Square From Likelihood to Sum Square 
ErrorsErrors

Noise term has zero mean and s.d. σ

Neural network expected to provide a model of 
g(X)

Since f(X,W) is deterministic p(dj|X) = p(∈j)



From Likelihood to Sum Square From Likelihood to Sum Square 
ErrorsErrors

Neglecting the constant terms yields



Interpreting Network Signal VectorsInterpreting Network Signal Vectors
Re-write the sum of squares error function

1/Q provides averaging, permits replacement 
of the summations by integrals



Interpreting Network Signal VectorsInterpreting Network Signal Vectors
Algebra yields

Error is minimized when fj(X,W) = E[dj|X] for each j.
The error minimization procedure tends to drive the 
network map fj(X,W) towards the conditional average 
E[dj,X] of the desired outputs
At the error minimum, network map approximates the 
regression of d conditioned on X!



Numerical ExampleNumerical Example
Noisy distribution 
of 200 points 
distributed about 
the function
Used to train a 
neural network 
with 7 hidden 
nodes
Response of the 
network is plotted 
with a continuous 
line



Residual ErrorResidual Error
The error expression just presented neglected an 
integral term shown below

If the training environment does manage to reduce the 
error on the first integral term in to zero, a residual 
error still manifests due to the second integral term



Notes…Notes…
The network cannot reduce the error 
below the average variance of the target 
data!
The results discussed rest on the three 
assumptions:

The data set is sufficiently large
The network architecture is sufficiently 
general to drive the error to zero.
The error minimization procedure selected 
does find the appropriate error minimum.



An Important PointAn Important Point
Sum of squares error function was derived from 
maximum likelihood and Gaussian distributed target data
Using a sum of squares error function for training a 
neural network does not require target data be Gaussian 
distributed. 
A neural network trained with a sum of squares error 
function generates outputs that provide estimates of the 
average of the target data and the average variance of 
target data
Therefore, the specific selection of a sum of squares 
error function does not allow us to distinguish between 
Gaussian and non-Gaussian distributed target data which 
share the same average desired outputs and average 
desired output variances…



Classification ProblemsClassification Problems
For a C-class classification problem, there will 
be C-outputs
Only 1-of-C outputs will be one
Input pattern Xk is classified into class J if 

A more sophisticated approach seeks to 
represent the outputs of the network as 
posterior probabilities of class memberships.



Advantages of a Probabilistic Advantages of a Probabilistic 
InterpretationInterpretation

We make classification decisions that lead to the 
smallest error rates.
By actually computing a prior from the network pattern 
average, and comparing that value with the knowledge 
of a prior calculated from class frequency fractions on 
the training set, one can measure how closely the 
network is able to model the posterior probabilities.
The network outputs estimate posterior probabilities 
from training data in which class priors are naturally 
estimated from the training set. Sometimes class priors 
will actually differ from those computed from the 
training set. A compensation for this difference can be 
made easily.



NN NN ClassifersClassifers and Square Error and Square Error 
FunctionsFunctions

Recall: feedforward neural network trained on a 
squared error function generates signals that 
approximate the conditional average of the desired 
target vectors
If the error approaches zero,

The probability that desired values take on 0 or 1 is the 
probability of the pattern belonging to that class 



Network Output = Class PosteriorNetwork Output = Class Posterior

The jth output sj is

Class posterior



Relaxing the Gaussian ConstraintRelaxing the Gaussian Constraint
Design a new error function

Without the Gaussian noise assumption on 
the desired outputs
Retain the ability to interpret the network 
outputs as posterior probabilities 
Subject to constraints:

signal confinement to (0,1) and
sum of outputs to 1



Neural Network With A Single Neural Network With A Single 
OutputOutput

Output s represents Class 1 posterior
Then 1-s represents Class 2 posterior
The probability that we observe a target value 
dk on pattern Xk

Problem: Maximize the likelihood of observing 
the training data set



Cross Entropy Error FunctionCross Entropy Error Function
Maximizing the probability of observing 
desired value dk for input Xk on each pattern in 
T
Likelihood

Convenient to 
minimize the negative 
log-likelihood, which 
we denote as the 
error:



Architecture of Feedforward Architecture of Feedforward 
Network ClassifierNetwork Classifier



Network TrainingNetwork Training
Using the chain rule (Chapter 6) with the cross 
entropy error function

Input – hidden weight derivatives can be found 
similarly



CC--Class ProblemClass Problem
Assume a 1 of C encoding scheme
Network has C outputs

and

Likelihood function



Modified Error FunctionModified Error Function
Cross entropy error 
function for the C-
class case

Minimum value

Subtracting the 
minimum value ensures 
that the minimum is 
always zero



SoftmaxSoftmax Signal FunctionSignal Function
Ensures that 

the outputs of the network are confined to 
the interval (0,1) and 
simultaneously all outputs add to 1

Is a close relative of the sigmoid



Error DerivativesError Derivatives
For hidden-output weights

The remaining part of the error 
backpropagation algorithm remains intact


