
Copyright © 2004
Tata McGraw Hill Publishing Co.

Neural Networks: A Classroom Approach
Satish Kumar

Department of Physics & Computer Science
Dayalbagh Educational Institute (Deemed University)

Chapter 8Chapter 8

Support Vector Support Vector
Machines and Radial Machines and Radial
Basis Function Basis Function
NetworksNetworks

Copyright © 2004
Tata McGraw Hill Publishing Co.

Neural Networks: A Classroom Approach
Satish Kumar

Department of Physics & Computer Science
Dayalbagh Educational Institute (Deemed University)

Statistical Statistical
Learning TheoryLearning Theory

Learning from ExamplesLearning from Examples
Learning from examples is natural in human
beings

Central to the study and design of artificial
neural systems.

Objective in understanding learning mechanisms
Develop software and hardware that can learn
from examples and exploit information in
impinging data.
Examples:

bit streams from radio telescopes around the globe
100 TB on the Internet

GeneralizationGeneralization
Supervised systems learn from a training
set T = {Xk, Dk} Xk∈ℜn , Dk∈ℜ
Basic idea: Use the system (network) in
predictive mode ypredicted = f(Xunseen)
Another way of stating is that we require
that the machine be able to successfully
generalize.

Regression: ypredicted is a real random variable
Classification: ypredicted is either +1, -1

ApproximationApproximation
Approximation results discussed in Chapter 6
give us a guarantee that with a sufficient
number of hidden neurons it should be possible
to approximate a given function (as dictated by
the input–output training pairs) to any
arbitrary level of accuracy.
Usefulness of the network depends primarily
on the accuracy of its predictions of the
output for unseen test patterns.

Important NoteImportant Note
Reduction of the mean squared error on the
training set to a low level does not guarantee
good generalization!
Neural network might predict values based on
unseen inputs rather inaccurately, even when
the network has been trained to considerably
low error tolerances.
Generalization should be measured using test
patterns similar to the training patterns

patterns drawn from the same probability
distribution as the training patterns.

Broad ObjectiveBroad Objective
To model the generator function as
closely as possible so that the network
becomes capable of good generalization.
Not to fit the model to the training data
so accurately that it fails to generalize
on unseen data.

Example of Example of OverfittingOverfitting
Networks with too many
weights (free parameters)
overfits training data too
accurately and fail to
generalize
Example:

7 hidden node feedforward
neural network
15 noisy patterns that
describe the deterministic
univariate function (dashed
line).
Error tolerance 0.0001.
Network learns each data
point extremely accurately
Network function develops
high curvature and fails to
generalize

Occam’sOccam’s Razor PrincipleRazor Principle
William Occam, c.1280–1349

No more things should be presumed to exist
than are absolutely necessary.

Generalization ability of a machine is
closely related to

the capacity of the machine (functions it can
represent)
the data set that is used for training.

Statistical Learning TheoryStatistical Learning Theory
Proposed by Vapnik
Essential idea: Regularization

Given a finite set of training examples, the search
for the best approximating function must be
restricted to a small space of possible
architectures.
When the space of representative functions and
their capacity is large and the data set small, the
models tend to over-fit and generalize poorly.

Given a finite training data set, achieve the
correct balance between accuracy in training on
that data set and the capacity of the machine
to learn any data set without error.

Optimal Neural NetworkOptimal Neural Network
Recall from Chapter 7 the sum of squares error
function

Optimal neural network satisfies

Residual error:
average training
data variance
conditioned on
the input

The optimal network function we are in search of minimizes
the error by trying to make the first integral zero

Training Dependence on DataTraining Dependence on Data
Network deviation from the desired average is
measured by

Deviation depends on a particular instance of a
training data set
Dependence is easily eliminated by averaging
over the ensemble of data sets of size Q

Causes of Error: Bias and VarianceCauses of Error: Bias and Variance

Bias: network function itself differs
from the regression function E[d|X]

Variance: network function is sensitive
to the selection of the data set

generates large error on some data sets
and small errors on others.

Quantification of Bias & VarianceQuantification of Bias & Variance

Consequently,

BiasBias--Variance DilemmaVariance Dilemma
Separation of the ensemble average into the bias and
variance terms:

Strike a balance between the ratio of training set size
to network complexity such that both bias and variance
are minimized.

→ Good generalization
Two important factors for valid generalization

the number of training patterns used in learning
the number of weights in the network

Stochastic Nature of Stochastic Nature of TT
T is sampled stochastically
Xk ⊂ X ∈ ℜn, dk ⊂ D ∈ ℜ
Xk does not map uniquely
to an element, rather a
distribution
Unkown probability
distribution p(X,d) defined
on X × D determines the
probability of observing
(Xk, dk)

Xk
dk

X
P(X)

D
P(d|x)

Risk FunctionalRisk Functional
To successfully solve the regression or
classification task, a neural network learns
an approximating function f(X, W)
Define the expected risk as

The risk is a function of functions f drawn
from a function space F

Loss FunctionsLoss Functions
Square error function

Absolute error function

0-1 Loss function

Optimal FunctionOptimal Function
The optimal function fo minimizes the
expected risk R[f]

fo defined by optimal parameters; Wo is
the ideal estimator
Remember: p(X,d) is unknown, and fo has
to be estimated from finite samples
fo cannot be found in practice!

Empirical Risk Minimization (ERM)Empirical Risk Minimization (ERM)

ERM principle is an induction principle
that we can use to train the machine
using the limited number of data samples
at hand
ERM generates a stochastic
approximation of R using T called the
empirical risk Re

Empirical Risk Minimization (ERM)Empirical Risk Minimization (ERM)

The best minimizer of the empirical risk
replaces the optimal function fo
ERM replaces R by Re and fo by
Question:

Is the minimizer close to fo ?

f̂

f̂

Two Important Sequence LimitsTwo Important Sequence Limits
To ensure minimizer close to fo we need
to find the conditions for consistency of
the ERM principle.
Essentially requires specifying the
necessary and sufficient conditions for
convergence of the following two limits
of sequences in a probabilistic sense.

f̂

First LimitFirst Limit
Convergence of the values of expected risks
of functions ,Q = 1,2,… that minimize the
empirical risk over training sets of size
Q, to the minimum of the true risk

Another way of saying that solutions found
using ERM converge to the best possible
solution.

]Q̂fR[
Qf̂

]Q̂e f[R

Second LimitSecond Limit
Convergence of the values of empirical risk
Q = 1,2,… over training sets of size Q, to the
minimum of the true risk

This amounts to stating that the empirical risk
converges to the value of the smallest risk.
Leads to the Key Theorem by Vapnik and
Chervonenkis

]ˆ
Qe f[R

Key TheoremKey Theorem
Let L(d,f(X,W)) be a set of functions with a bounded loss for
probability measure p(X,d) :

Then for the ERM principle to be consistent, it is necessary
and sufficient that the empirical risk Re[f] converge
uniformly to the expected risk R[f] over the set L(d,f(X,W))
such that

This is called uniform one-sided convergence in probability

Points to Take HomePoints to Take Home
In the context of neural networks, each
function is defined by the weights W of
the network.
Uniform convergence Theorem and VC
Theory ensure that W which is obtained
by minimizing Re also minimizes R as the
number Q of data points increases
towards infinity.

Points to Take HomePoints to Take Home
Remember: we have a finite data set to
train our machine.
When any machine is trained on a
specific data set (which is finite) the
function it generates is a biased
approximant which may minimize the
empirical risk or approximation error,
but not necessarily the expected risk or
the generalization error.

Indicator Functions and Indicator Functions and LabellingsLabellings

Consider the set of indicator functions
F = {f(X,W)} mapping points in ℜn into {0,1}
or {-1,1}.

Labelling: An assignment of 0,1 to Q
points in ℜn

Q points can be labelled in 2Q ways

LabellingsLabellings in 3in 3--dd

(d)(c)(b)(a)

(g) (h)(e) (f)

Three points in RR2 can be labelled in eight different ways.
A linear oriented decision boundary can shatter all eight labellings.

Vapnik–Chervonenkis Dimension
If the set of indicator functions can
correctly classify each of the possible
2Q labellings, we say the set of points is
shattered by F.
The VC-dimension h of a set of functions
F is the largest set of points that can be
shattered by the set in question.

VCVC--Dimension of Linear Decision Dimension of Linear Decision
Functions in Functions in ℜℜ22 is 3is 3

Labelling of four points in
ℜℜ2 that cannot be
correctly separated by a
linear oriented decision
boundary

A quadratic decision
boundary can separate
this labelling!

VCVC--Dimension of Linear Decision Dimension of Linear Decision
Functions in Functions in ℜℜnn

At most n+1 points can be shattered by
oriented hyperplanes in ℜℜn

VC-dimension is n+1
Equal to the number of free parameters

Growth FunctionGrowth Function
Consider Q points in ℜℜn

NXQ labellings can be shattered by F
NXQ ≤ 2Q

Growth function

ln2 Q)(N sup lnG(Q)
Q

Q

X
X

≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

Growth Function and VC DimensionGrowth Function and VC Dimension

Nothing in between
these is allowed

The point of deviation is
the VC-dimension

G(Q)

h Q

Towards Complexity ControlTowards Complexity Control
In a machine trained on a given training set the
appoximants generated are naturally biased
towards those data points.
Necessary to ensure that the model chosen for
representation of the underlying function has a
complexity (or capacity) that matches the data
set in question.
Solution: structural risk minimization
Consequence of VC-theory

The difference between the empirical and expected
risk can be bounded in terms of the VC-dimension.

VCVC--Confidence, Confidence LevelConfidence, Confidence Level
For binary classification loss functions
which take on values either 0,1, for some
0≤η≤1 the following bound holds with
probability at least 1-η:

VCVC--confidence holds with confidence level confidence holds with confidence level 1-η
Empirical error

Structural Risk MinimizationStructural Risk Minimization
Structural Risk Minimization (SRM):

Minimize the combination of the empirical risk and the
complexity of the hypothesis space.

Space of functions F is very large, and so restrict the
focus of learning to a smaller space called the
hypothesis space.
SRM therefore defines a nested sequence of
hypothesis spaces

F1 ⊂ F2 ⊂… ⊂ Fn ⊂…

VC-dimensions h1≤ h2 ≤ … ≤ hn ≤ …
Increasing complexity

Nested Hypothesis Spaces form a Nested Hypothesis Spaces form a
StructureStructure

F1 F2 F3 Fn… …

VC-dimensions h1 ≤ h2 ≤ … ≤ hn ≤ …

Empirical and Expected Risk Empirical and Expected Risk
MinimizersMinimizers

minimizes the empirical error over the Q
points in space Fi

Is different from the true minimizer of the
expected risk R in Fi

Qi,f̂

if̂

A TradeA Trade--offoff

Successive models have greater flexibility such that
the empirical error can be pushed down further.
Increasing i increases the VC-dimension and thus the
second term
Find Fn(Q), the minimizer of the r.h.s.
Goal: select an appropriate hypothesis space to match
the training data complexity to the model capacity.
This gives the best generalization.

Approximation Error: BiasApproximation Error: Bias
Essentially two costs associated with the
learning of the underlying function.
Approximation error, EA:

Introduced by restricting the space of possible
functions to be less complex than the target space
Measured by the difference in the expected risks
associated with the best function and the optimal
function that measures R in the target space
Does not depend on the training data set; only on
the approximation power of the function space

Estimation Error: VarianceEstimation Error: Variance
Now introduce the finite training set with
which we train the machine.
Estimation Error, EE:

Learning from finite data minimizes the empirical
risk; not the expected risk.
The system thus searches a minimizer of the
expirical risk; not the expected risk
This introduces a second level of error.

Generalization error = EA +EE

A Warning on Bound AccuracyA Warning on Bound Accuracy
As the number of training points increase, the
difference between the empirical and expected
risk decreases.
As the confidence level increases (η becomes
smaller), the VC confidence term becomes
increasingly large.
With a finite set of training data, one cannot
increase the confidence level indefinitely:

the accuracy provided by the bound decreases!

Copyright © 2004
Tata McGraw Hill Publishing Co.

Neural Networks: A Classroom Approach
Satish Kumar

Department of Physics & Computer Science
Dayalbagh Educational Institute (Deemed University)

Support Vector
Machines

OriginsOrigins
Support Vector Machines (SVMs) have a firm
grounding in the VC theory of statistical learning
Essentially implements structural risk minimization
Originated in the work of Vapnik and co-workers at
the AT&T Bell Laboratories
Initial work focussed on

optical character recognition
object recognition tasks

Later applications
regression and time series prediction tasks

ContextContext
Consider two sets of data points that
are to be classified into one of two
classes C1, C2
Linear indicator functions (TLN
hyperplane classifiers) which is the
bipolar signum function
Data set is linearly separable
T = {Xk, dk}, Xk ∈ℜn, dk ∈ {-1,1}
C1: positive samples C2: negative samples

SVM Design ObjectiveSVM Design Objective
Find the hyperplane that maximizes the
margin

Class 2

Class 1

Class 2

Class 1

Distance to closest
points on either
side of hyperplane

Hypothesis SpaceHypothesis Space
Our hypothesis space is the space of functions

Similar to Perceptron, but now we want to
maximize the margins from the separating
hyperplane to the nearest positive and negative
data points.
Find the maximum margin hyperplane for the
given training set.

Definition of MarginDefinition of Margin
The perpendicular
distance to the
closest positive
sample (d+) or
negative sample (d-)
is called the margin Class 2

Class 1

d+

d-X-

X+

Reformulation of Classification Reformulation of Classification
CriteriaCriteria

Originally

Reformulated as

Introducing a margin ∆ so that the hyperplane
satisfies

Canonical Separating Canonical Separating HyperplanesHyperplanes

Satisfy the constraint ∆ = 1
Then we may write

or more compactly

NotationNotation
X+ is the data point from
C1 closest to hyperplane
Π, and XΠ is the unique
point on Π that is
closest to X+

Maximize d+
d+ = || X+ - XΠ ||

From the defining equation
of hyperplane Π,

Class 1

XΠ

d+

X+Π

Expression for the MarginExpression for the Margin
Defining equations of
hyperplane yield

Noting that X+ - XΠ is also
perpendicular to Π

Eventually yields

Total margin

Support VectorsSupport Vectors
Vectors on the margin
are the support
vectors, and the total
margin is 2/llWll

Class 1
Margin

Total Margin

Π-

Π

Π+

support vectors

SVM and SRMSVM and SRM
If all data point lie within an n-dimensional hypersphere
of radius ρ then the set of indicator functions

has a VC-dimension that satisfies the following bound

Distance to closest point is 1/||W||
Constrain ||W|| ≤ A then the distance from the
hyperplane to the closest data point must be greater
than 1/A. Therefore, Minimize ||W||

SVM Implements SRMSVM Implements SRM

An SVM implements
SRM by constraining
hyperplanes to lie
outside hyperspheres
of radius 1/A

radius
1/A

ρ

Objective of the Support Vector Objective of the Support Vector
MachineMachine

Given T = {Xk, dk}, Xk ∈ℜn, dk ∈ {-1,1}
C1: positive samples C2: negative samples
Attempt to classify the data using the smallest
possible weight vector norm ||W|| or ||W||2

Maximize the margin 1/||W||
Minimize

subject to the constraints

Method of Lagrange MultipliersMethod of Lagrange Multipliers
Used for two reasons

the constraints on the Lagrangian multipliers
are easier to handle;
the training data appear in the form of dot
products in the final equations a fact that
we extensively exploit in the non-linear
support vector machine.

Construction of the Construction of the LagrangianLagrangian
Formulate problem in primal space
Λ = (λ1, …, λQ), λi ≥ 0 is a vector of
Lagrange multipliers

Saddle point of Lp is the solution to the
problem

Shift to Dual SpaceShift to Dual Space
Makes the optimization problem much cleaner
in the sense that requires only maximization of
λi

Translation to the dual form is possible
because both the cost function and the
constraints are strictly convex.
Kuhn–Tucker conditions for the optimum of a
constrained optimization problem are invoked
to effect the translation of Lp to the dual
form

Shift to Dual SpaceShift to Dual Space
Partial derivatives of Lp with respect to
the primal variables must vanish at the
solution points

D = (d1,…dQ)T is the vector of desired
values

KuhnKuhn––Tucker Tucker ComplementarityComplementarity
ConditionsConditions

Constraint
Must be satisfied with equality

Yields the dual formulation

Final Dual Optimization ProblemFinal Dual Optimization Problem
Maximize

with respect to the Lagrange multipliers,
subject to the constraints:

Quadratic programming optimization problem

Support VectorsSupport Vectors
Numeric optimization yields optimized Lagrange
multipliers

Observation: some Lagrange multipliers go to
zero.
Data vectors for which the Lagrange
multipliers are greater than zero are called
support vectors.
For all other data points which are not support
vectors, λi = 0.

T
Q1)λ,...,(λΛ =ˆ

Optimal Weights and BiasOptimal Weights and Bias
ns is the number of
support vectors

Optimal bias
computed from the
complementarity
conditions
Usually averaged
over all support
vectors and uses
Hessian

Classifying an Unknown Data PointClassifying an Unknown Data Point

Use a linear indicator function:

MATLAB Code: Linear SVM Linearly MATLAB Code: Linear SVM Linearly
Separable CaseSeparable Case

f = -ones(q,1); %Vectors of ones
% Parameters for the Optimization problem
numeqconstraints = 1; % Number of equality

constraints = 1
A = D’; % Set up the equality constraint
b = 0;
vlb = zeros(q,1); % Lower bound of lambdas = 0
vub = Inf*ones(q,1); % No upper bound
x0 = zeros(q,1); % Initial point is 0
%Invoke MATLAB’s standard qp function for

quadratic optimization...
[lambda alpha how] = qp(H, f, A, b, vlb, vub, x0,

numeqconstraints);
svindex= find(lambda > epsilon);% Support vector

indices
ns = length(svindex); % Number of support

vectors
w_0 = (1/ns)*sum(D(svindex) - ...% Optimal bias
H(svindex,svindex)*lambda(svindex).*D(svindex));

X=[0.5 0.5 % Data points
0.5 1.0
1. 1.5
1.5 0.5
1.5 2.0
2.0 1.0
2.5 2.0
2.5 2.5];
D=[-1 -1 -1 -1 1 1 1 1]’;% Corresponding

classes
q = size(X,1); % Size of data set
epsilon = 1e-5; % threshold for checking

support vectors
H = zeros(q,q); % Initialize Hessian matrix
for i = 1:q % Set up the Hessian
for j = 1:q
H(i,j) = D(i)*D(j)*X(i,:)*X(j,:)’;
end
end
...

Simulation ResultSimulation Result
Details of linearly separable data, support vectors and
Lagrange multipliers values after optimization

Simulation ResultSimulation Result

(a) Class 1 data (triangles) and Class 2 data (stars) plotted against a shaded background
indicating the magnitude of the hyperplane: large negative values are black; large positive values
are white. The class separating boundary (solid line) is shown along with the margins (dotted
lines). Four support vectors are visible. (b) Intersection of the hyperplane and the indicator
function gives the class separating boundaries and the margins. These are also indicated by the
contour lines

Soft Margin Soft Margin HyperplaneHyperplane ClassifierClassifier
For non-linearly separable data classes
overlap
Constraint cannot be
satisfied for all data points
Optimization procedure will go on increasing
the dual Lagrangian to arbitrarily large
values
Solution: Permit the algorithm to misclassify
some of the data points albeit with an
increased cost
A soft margin is generated within which all
the misclassified data lie

Soft Margin ClassifierSoft Margin Classifier

Class 1
Π+

Π

d(X1)=1-ξ1

d(x)=0

d(x)=1

d(x)=-1

X1

d(X2)=-1+ξ2

X2

Class 2

Π-

Slack VariablesSlack Variables
Introduce Q slack variables ξi

Data point is misclassified if the
corresponding slack variable exceeds
unity

Σ ξi represents an upper bound on the
number of misclassifications

Cost FunctionCost Function
Optimization problem is modified as:

Minimize

subject to the constraints

NotesNotes
C is a parameter that assigns a penalty to the
misclassifications
Choose k = 1 to make the problem quadratic
Minimizing ||W||2 minimizes the VC-dimension
while maximizing the margin
C provides a trade-off between the VC-
dimension and the empirical risk by changing
the relative weights of the two terms in the
objective function

LagrangianLagrangian in Primal Variablesin Primal Variables
For the re-formulated optimization
problem

DefinitionsDefinitions
Λ = (λ1,…,λQ)T λi ≥ 0 Γ = (γ1,…,γQ)T γ ≥ 0
Ξ = (ξ1,…, ξQ)T ξ ≥ 0
Reformulate the optimization problem in
the dual space
Invoke Kuhn–Tucker conditions for the
optimum

Intermediate ResultIntermediate Result
Partial derivatives with respect to the primal
variables must vanish at the saddle point.

KuhnKuhn--Tucker Tucker ComplementarityComplementarity
ConditionsConditions

These are
Which finally yields the dual formulation:

Recast into matrix form

Hessian matrix has elements Hij = di dj(Xi · Xj)

Dual Optimization ProblemDual Optimization Problem
Maximize

Subject to the constraints

Optimal Weight VectorOptimal Weight Vector
Lagrange dual for
the non-separable
case is identical to
that of the
separable case

No slack variables or
their Lagrange
multipliers appear
Difference: Lagrange
multipliers now have
an upper bound: C

Compute the optimal
weight vector

KuhnKuhn––Tucker Tucker ComplementarityComplementarity
Application yields

And we know for support vectors, λi ≥ 0 and,

Implies that the following constraint is
satisfied exactly:

0ξ1)wX(Wd i0ii =+−+⋅

Bounded and Unbounded Support Bounded and Unbounded Support
VectorsVectors

Option 1
ξi = 0 ⇒ the support vector is on the margin
⇒ γi > 0 ⇒ λi < C
For support vectors on the margin 0 < λi < C
These are called unbounded support vectors

Option 2
ξi > 0 ⇒ γi = 0 ⇒ λi = C
Support vectors between the margins have their
Lagrange multipliers equal to the bound C
These are called bounded support vectors

Computation of the BiasComputation of the Bias
By averaging over unbounded support
vectors

Unknown data point classified using the
indicator function

MATLAB Code: NonMATLAB Code: Non--separable separable
Classes, Linear SVMClasses, Linear SVM

f = -ones(q,1); %Vectors of ones
% Parameters for the Optimization problem
vlb = zeros(q,1); % Lower bound of lambdas = 0
vub = C*ones(q,1); % Upper bound C
x0 = zeros(q,1); % Initial point is 0
numconstraints = 1; % Number of equality

constraints = 1
A = D’; % Set up the equality constraint
b = 0;
%Invoke MATLAB’s standard qp function for

quadratic optimization...
[lambda alpha how] = qp(H, f, A, b, vlb, vub, x0,

numconstraints);
svindex= find(lambda > epsilon); %Find support

vectors
%Find unbounded support vectors
usvindex= find(lambda > epsilon & lambda < C -

epsilon);
ns = length(usvindex);% Number of unbounded

support vectors
w_0 = (1/ns)*sum(D(usvindex) - ... % Optimal bias
H(usvindex,svindex)*lambda(svindex).*D(usvindex

));
...

clear all;
X=[0.5 0.5 % Data points
0.5 1.0
1. 1.5
1.5 0.5
1.5 2.0
2.0 1.0
2.5 2.0
2.5 2.5];
% Corresponding classes
D=[-1 -1 1 -1 -1 1 1 1]’;
q = size(X,1); % size of data set
epsilon = 1e-5; % threshold to check support

vectors
C = 5; % Control parameter
H = zeros(q,q); % Initialize Hessian matrix
for i = 1:q % Set up the Hessian
for j = 1:q
H(i,j) = D(i)*D(j)*X(i,:)*X(j,:)’;
end
end

SimulationSimulation
Linearly non-separable data set, Lagrange multiplier
values after optimization, and type of support/non-
support vector

SimulationSimulation
Same data set as
in the linearly
separable case,
except for

classes of data
points 3 and 5
interchanged to
make the
problem non-
separable

Number of support
vectors is now six
Two are
unbounded, and
four being bounded

Towards the NonTowards the Non--linear SVMlinear SVM
Next:

Lay down the method of designing a support
vector machine that has a non-linear
decision boundary.

Ideas about the linear SVM are directly
extendable to the non-linear SVM using
an amazingly simple technique that is
based on the notion of an inner product
kernel.

Feature Space MapsFeature Space Maps
Basic idea:

Map the data points using a feature space map into a
very high dimensional feature space H

Non-separable data become linearly separable
Work on a linear decision boundary in that space

Map everything back to the original pattern space

Pictorial Representation of NonPictorial Representation of Non--
linear SVM Design Philosophylinear SVM Design Philosophy

Low dimensional X space High dimensional feature space

Class 1

Class 2

Class 1

Class 2

Linear separating
boundary in feature
space maps to non-
linear boundary in X
space

Inner product of feature vectors
φ(Xi) . φ(Xj)

Kernel function evaluation
K(Xi, Xj)

Kernel FunctionKernel Function
Note: X values of the training data appear in
the Hessian term Hij only in the form of dot
products
Search for a “Kernel Function” that satisfies

Allows us to use K(Xi, Xj) directly in our
equations without knowledge of the map!

Example: Computing Feature Space Example: Computing Feature Space
Inner Products via Kernel FunctionsInner Products via Kernel Functions

Assume X = x, Φ(x) = (1,x,x2,…,xm)
Choose al = 1, l = 1,…,m, and the decision surface
is a polynomial in x
The inner product Φ(x) · Φ(y) =
(1,x,x2,…,xm)T(1,y,y2,…,ym) = 1 + xy + (xy)2 + (xy)m

is polynomial of degree m
Computing in high dimensions can become
computationally very expensive…

An Amazing TrickAn Amazing Trick
Careful choice of the coefficients can
change everything!
Example: Choosing
Yields

A “kernel” function evaluation equals the
inner product, making computation
simple.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

l
m

al

m
m

0l

l xy)(1(xy)
l
m

Φ(y)Φ(x) +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⋅ ∑

=

ExampleExample
X = (x1, x2)T

Input space ℜ2

Feature space ℜ6 :

Admits the kernel function
)xx2,x,x,x2,x2(1, Φ(X) 21

2
2

2
121=

2XY)(1 Φ(Y)Φ(X) Y)K(X, +=⋅=

NonNon--Linear SVM Linear SVM DiscriminantDiscriminant with with
Polynomial Kernel FunctionsPolynomial Kernel Functions

Using kernel functions for inner products the
SVM discriminant becomes

This is a non-linear decision boundary in input
space generated from a linear superposition of
ns kernel function terms
This requires the identification of suitable
kernel functions that can be employed

Mercer’s ConditionMercer’s Condition
There exists a mapping Φ and an expansion of a
symmetric kernel function

iff

such that

Inner Product Kernels (1)Inner Product Kernels (1)
Polynomial discriminant functions

admit the kernel function

Inner Product Kernels (2)Inner Product Kernels (2)
Radial basis indicator functions of the form

admit the kernel function

Inner Product Kernels (3)Inner Product Kernels (3)
Neural network indicator functions of the form

admit the kernel function

Operational Summary of SVM Operational Summary of SVM
Learning AlgorithmLearning Algorithm

Operational Summary of SVM Operational Summary of SVM
Learning AlgorithmLearning Algorithm

MATLAB Code Segment for MATLAB Code Segment for
Hessian ComputationHessian Computation
% All code same as for linear SVM non-separable data
% Code snippet shown for polynomial kernel

ord = 2; % Order of polynomial kernel
H = zeros(q,q); % Initialize Hessian matrix

for i = 1:q % Set up the Hessian
for j = 1:q
H(i,j) = D(i)*D(j)*(X(i,:)*X(j,:)’ + 1)ˆ ord;

end
end

SVM Computations Portrayed as a SVM Computations Portrayed as a
FeedforwardFeedforward Neural Network!Neural Network!

K(X,X1)

K(X,X2)

K(X,Xns)

Σ

X1

……

X

X1

Xns

111 dλw ˆ=

222 dλw ˆ=

nsnsns dλw ˆ=

Applied
Test vector

Support
Vector

Kernel
function

layer

Weights as products
Of Lagrange multipliers

and desired values

XOR SimulationXOR Simulation
XOR Classification, C = 3, Polynomial kernel (Xi

TXj +1)2

Margins and class separating boundary using a
second order polynomial kernel function and non-line

Intersection of the signum indicator
ar polynomial surface

XOR SimulationXOR Simulation
Data specification for the XOR classification problem
with Lagrange multiplier values after optimization

NonNon--linearly Separable Data linearly Separable Data
Scatter SimulationScatter Simulation

C = 10: Stress on large margin sacrifice classification
accuracy

NonNon--linearly Separable Data linearly Separable Data
Scatter SimulationScatter Simulation

C = 10

NonNon--linearly Separable Data linearly Separable Data
Scatter SimulationScatter Simulation

C= 150: Small margin, high classification accuracy

NonNon--linearly Separable Data linearly Separable Data
Scatter SimulationScatter Simulation

C = 150

Support Vector Machines for Support Vector Machines for
RegressionRegression

The outputs can take on real values, and thus
the training data now take on the form T = {Xk,
dk} Xk ∈ ℜn, dk ∈ ℜ
Find the functional that models the
dependence of d on X in a probabilistic sense
Support vector machines for regression
approximate functions of the form

High dimensional feature vector

Measure of the Approximation ErrorMeasure of the Approximation Error

Vapnik introduced a more general error
function called the ε-insensitive loss
function

No loss if error range within ±ε
Loss equal to linear error - ε if error
greater than ±ε

εε--Insensitive Loss FunctionInsensitive Loss Function

Minimization ProblemMinimization Problem
Assume the empirical risk

subject to

Introduce two sets of slack variables ξi,
ξi’ for each of Q input patterns

Cost FunctionalCost Functional
Define

The empirical risk minimization problem is then
equivalent to minimizing the functional

Primal Variable Primal Variable LagrangianLagrangian
Slack variables Ξ = (ξ1,…, ξQ)T Ξ = (ξ1’,…, ξQ’)T

Lagrange multipliers Γ = (γ1,… γQ)T Λ = (λ1,… λQ)T

Γ’ = (γ1’,… γQ’)T Λ = (λ1’,… λQ’)T

Saddle Point Saddle Point BehaviourBehaviour

Simplified Dual FormSimplified Dual Form
Substitution results in the dual form

Dual Dual LagrangianLagrangian in Vector Formin Vector Form
Maximize

subject to the constraints Hij = K(Xi, Xj)
D = (d1, …, dQ)T

1 = (1,…,1)T

Optimal Weight VectorOptimal Weight Vector
For ns support vectors

Computing the Optimal BiasComputing the Optimal Bias
Invoke Kuhn-Tucker complementarity

Substitution of the optimal weight vector
yields

SimulationSimulation
Regression
on noisy
hyperbolic
tangent data
scatter
Third order
polynomial
kernel
ε=0.05, C=10

SimulationSimulation
Regression
on noisy
hyperbolic
tangent data
scatter
Eight order
polynomial
kernel
ε=0.00005,
C=10

Simulation: Zoom PlotSimulation: Zoom Plot
Eight order
polynomial
kernel
ε=0.00005,
C=10
Shows the
fine margin,
and the
support
vector

Copyright © 2004
Tata McGraw Hill Publishing Co.

Neural Networks: A Classroom Approach
Satish Kumar

Department of Physics & Computer Science
Dayalbagh Educational Institute (Deemed University)

Radial Basis Radial Basis
Function NetworksFunction Networks

Radial Basis Function NetworksRadial Basis Function Networks
Feedforward neural networks

compute activations at the hidden neurons
using an exponential of a [Euclidean]
distance measure between the input vector
and a prototype vector that characterizes
the signal function at a hidden neuron.

Originally introduced into the literature
for the purpose of interpolation of data
points on a finite training set

Interpolation ProblemInterpolation Problem
Given T = {Xk, dk} Xk ∈ ℜn, dk ∈ ℜ
Solving the interpolation problem means finding
the map f(Xk) = dk, k = 1,…,Q (target points are
scalars for simplicity of exposition)
RBFN assumes a set of exactly Q non-linear
basis functions φ(||X - Xi||)
Map is generated using a superposition of these

Exact Interpolation EquationExact Interpolation Equation
Interpolation conditions

Matrix definitions

Yields a compact matrix
equation

MichelliMichelli FunctionsFunctions
Gaussian functions

Multiquadrics

Inverse multiquadrics

Solving the Interpolation ProblemSolving the Interpolation Problem
Choosing Φ correctly ensures invertibility: W =
Φ-1 D
Solution is a set of weights such that the
interpolating surface generated passes through
exactly every data point
Common form of Φ is the localized Gaussian
basis function with center µ and spread σ

Radial Basis Function NetworkRadial Basis Function Network

φ1

φ2

x1

φQ

Σ

x2

xn

Interpolation ExampleInterpolation Example
Assume a noisy data scatter of Q = 10
data points
Generator: 2 sin(x) + x
In the graphs that follow:

data scatter (indicated by small triangles) is
shown along the generating function (the
fine line)
interpolation shown by the thick line

InterpolantInterpolant: Smoothness: Smoothness--AccuracyAccuracy
σ = 1 σ = 0.3

Derivative Square FunctionDerivative Square Function
σ = 1 σ = 0.3

NotesNotes
Making the spread factor smaller

makes the function increasingly non-smooth
being able to achieve a 100 per cent mapping accuracy on
the ten data points rather than smoothness of the
interpolation

Quantify the oscillatory behaviour of the interpolants by
considering their derivatives

Taking the derivative of the function
Square it (to make it positive everywhere)
Measure the areas under the curves

Provides a nice measure of the non-smoothness—the
greater the area, the more non-smooth the function!

Problems…Problems…
Oscillatory behaviour is highly undesirable for
proper generalization
Better generalization is achievable with
smoother functions which are fitted to noisy
data
Number of basis functions in the expansion is
equal to the number of data points!

Not possible to have for real world data sets can be
extremely large
Computational and storage requirements for can
explode very quickly

The RBFN SolutionThe RBFN Solution
Choose the number of basis functions to be
some number q < Q
No longer restrict the centers of the basis
functions to be fixed to the data point values.

Now made trainable parameters of the model
Spreads of each of the basis functions is
permitted to be different and trainable.

Learning can be done either by supervised or
unsupervised techniques

A bias is included in the final linear
superposition

Interpolation with Fewer than Q Interpolation with Fewer than Q
Basis FunctionsBasis Functions

Assume centers and spreads of the basis
functions are optimized and fixed
Proceed to determine the hidden–output
neuron weights using the procedure
adopted in the interpolation case

Solving the Problem in a Least Solving the Problem in a Least
Squares SenseSquares Sense

To formalize this, consider interpolating a set
of data points with a number q < Q
Then,

Introduce the notion of error since the
interpolation is not exact

Compute the Optimal WeightsCompute the Optimal Weights
Differentiating w.r.t. wi and setting it
equal to zero

Then

PseudoPseudo--InverseInverse
This yields

where

Equation solved using
singular value decomposition

Pseudo-inverse
(is not square: q × Q)

Two ObservationsTwo Observations
Straightforward to include a bias term
w0 into the approximation equation

Basis function is generally chosen to be
the Gaussian

Generalizing FurtherGeneralizing Further
RBFs can be generalized to include arbitrary
covariance matrices Ki

Universal approximator
RBFNs have the best approximation property

The set of approximating functions that RBFNs are
capable of generating, there is one function that has
the minimum approximation error for any given
function which has to be approximated

Simulation ExampleSimulation Example
Consider approximating the ten noisy data
points with fewer than ten basis functions
f(x) = 2 sin(x) + x
Five basis functions chosen for approximation

half the number of data points.
Selected to be centered at data points 1, 3, 5,
7 and 9 (data points numbered from 1 through
10 from left to right on the graph [next slide])

Simulation ExampleSimulation Example
σ = 0.5 σ = 1

Simulation ExampleSimulation Example
σ = 5 σ = 10

MATLAB Code for RBFNMATLAB Code for RBFN
% Compute pseudo inverse
pseudoinv = inv(phi’ * phi) * phi’;
W = pseudoinv * d; % Compute weights
% Generate phi matrixfor test data

for i = 1:testpts
k=1;
for j = 1:Q/2

testphi(i,j) = exp(-(testx(i)-
x(k))ˆ2/(2*sigmaˆ2));

k=k+2;
end

end

% Generate approximant
f = testphi* W;
...

Q = 10; % 10 data points
noise = 0.6; % additive noise
x= linspace(-2*pi,2*pi,Q); % X samples
scatter = (2*rand(1,Q) - 1)*noise;
d = (2*sin(x) + x + scatter)’; % Y data
testpts = 100; % Number of test data
testx= linspace(-2*pi, 2*pi, testpts);
testy = (2*sin(testx) + testx)’;
sigma = .5;

for i = 1:Q
k=1;
for j = 1:Q/2

phi(i,j) = exp(-(x(i)-
x(k))ˆ2/(2*sigmaˆ2));

k=k+2;
end

end

RBFN Classifier to Solve the XOR
Problem

Will serve to show
how a bias term is
included at the
output linear neuron

RBFN classifier is
assumed to have two
basis functions
centered at data
points 1 and 4

Visualizing the Basis FunctionsVisualizing the Basis Functions

RBFN ArchitectureRBFN Architecture

+1
x1 φ1

φ2

Σ

w1

w2
f

x2

Basis functions centered
at data points 1 and 4

Finding the SolutionFinding the Solution
We have the D, W, Φ
vectors and matrices
as shown alongside

Pseudo inverse Weight vector

Visualization of SolutionVisualization of Solution

Ill Posed, Well Posed ProblemsIll Posed, Well Posed Problems
Ill-posed problems originally identified by Hadamard in
the context of partial differential equations.
Problems are well-posed if their solutions satisfy three
conditions:

they exist
they are unique
they depend continuously on the data set

Problems that are not well posed are ill-posed
Example

differentiation is an ill-posed problem because some
solutions need not depend continuously on the data
inverse kinematics problem which maps external real
world movements into an internal coordinate system

Approximation Problem is Ill PosedApproximation Problem is Ill Posed
The solution to the problem is not unique
Sufficient data is not available to reconstruct the mapping
uniquely
Data points are generally noisy
The solution to the ill-posed approximation problem lies in
regularization

essentially requires the introduction of certain constraints
that impose a restriction on the solution space

Necessarily problem dependent
Regularization techniques impose smoothness constraints
on the approximating set of functions.
Some degree of smoothness is necessary for the
representative function since it has to be robust against
noise.

Regularization Risk FunctionalRegularization Risk Functional
Assume training data T generated by
random sampling of the function
Regularization techniques replace the
standard error minimization problem
with minimization of a regularization risk
functional

TikhonovTikhonov FunctionalFunctional
Regularization risk functional comprises
two terms

error function smoothness functional

intuitively appealing to consider using
function derivatives to characterize smoothness

Regularization ParameterRegularization Parameter
The smoothness functional is expressed as

P is a linear differential operator, ||·|| is a norm
defined on the function space (Hilbert space)

The regularization risk functional to be
minimized is regularization parameter

EulerEuler––Lagrange EquationsLagrange Equations
We need to calculate the functional derivative
of Rr called the Frechet differential, and set it
equal to zero

A series of algebraic steps (see text) yields
the Euler-Lagrange equations for the Tikhonov
functional

Solving the Euler–Lagrange System
Requires the use of the Green’s function for
the linear differential operator

Green’s function for a linear differential
operator Q satisfies prescribed boundary
conditions and has continuous partial
derivatives with respect to X everywhere
except at X = Xi where there is a singularity.
Satisfies the differential equation QG(X,Y) = 0

PPQ
~

=

Solving the Euler–Lagrange System
See algebra in the text
Yields the final solution

Linear weighted sum of Q Greens functions
centered at the data points Xi

Quick SummaryQuick Summary
The regularization solution uses Q
Green’s functions in a weighted
summation
The nature of the chosen Green’s
function depends on the kind of
differential operator P chosen for the
regularization term of Rr

Solving for WeightsSolving for Weights
Starting point

Evaluate the
equation at each
data point

Solving for WeightsSolving for Weights
Introduce matrix notation

Solving for WeightsSolving for Weights
With these matrix definitions

and

Finally (!)

Euclidean Norm DependenceEuclidean Norm Dependence
If the differential operator P is

rotationally invariant
translationally invariant

Then the Green’s function G(X,Y) depends only
on the Euclidean norm of the difference of the
vectors

Then

Multivariate Multivariate GaussianGaussian is a Green’s is a Green’s
FunctionFunction

Gaussian function
defined by

is a Green’s function
defined by the self-
adjoint differential
operator

The final minimizer is
then

MATLAB Code Segment for MATLAB Code Segment for
RBFN Regularized InterpolationRBFN Regularized Interpolation
% Code segment for Regularized Interpolation
lambda = 0.5;
for i = 1:Q
for j = 1:Q
phi(i,j) = exp(-(x(i)-x(j))ˆ2/(2*sigmaˆ2));
end
end
Wreg = inv(phi + (lambda * eye(Q))) * d’;
for k = 1:testpts
for i = 1:Q
phitest(k,i) = exp(-(testx(k)-x(i))ˆ2/(2*sigmaˆ2));
end
f(k) = phitest(k,:)*W_reg;
end
...

Comparing Regularized and NonComparing Regularized and Non--
regularized Interpolationsregularized Interpolations

No regularizing term
λ = 0

Regularizing term λ =
0.5

Comparing Regularized and NonComparing Regularized and Non--
regularized Interpolationsregularized Interpolations

No regularizing term
λ = 0

Regularizing term λ =
0.5

Generalized Radial Basis Function Generalized Radial Basis Function
NetworkNetwork

We now proceed to generalize the RBFN
in two steps

Reduce the Number of Basis Functions,
Use Non-Data Centers
Use a Weighted Norm

Reduce the Number of Basis Reduce the Number of Basis
Functions, Use NonFunctions, Use Non--Data CentersData Centers

The approximating function is,

Interested in minimizing the regualrized
risk

Simplifying the First TermSimplifying the First Term
Using the
matrix
substitutions

yields

Simplifying the Second TermSimplifying the Second Term
Use the properties of the adjoint of the
differential operator and Green’s function

where

Finally

Using a Weighted NormUsing a Weighted Norm
Replace the standard Euclidean norm by

S is a norm-weighting matrix of dimension n×n
Substituting into the Gaussian yields

where K is the covariance matrix
With K = σ2I is a restricted form

Generalized Radial Basis Function Generalized Radial Basis Function
NetworkNetwork

Some properties
Fewer than Q basis functions
A weighted norm to compute distances,
which manifests itself as a general
covariance matrix
A bias weight at the output neuron
Tunable weights, centers, and covariance
matrices

Learning in Learning in RBFNsRBFNs
Random Subset Selection

Out of Q data points, q of them are
selected at random
Centers of the Gaussian basis functions are
set to those data points.

Semi-random selection
A basis function is placed at every rth data
point

Random, SemiRandom, Semi--random Selectionrandom Selection
Spreads are a function of the maximum
distance between chosen centers and q

Gaussians are then defined

such that

Operational Summary of Radial Basis Operational Summary of Radial Basis
Function NetworkFunction Network

Design assuming random placement of centers and fixed spreads

Hybrid Learning ProcedureHybrid Learning Procedure
Determine the centers of the basis
functions using a clustering algorithm
such as the k-means clustering algorithm
Tune the hidden to output weights using
the LMS procedure

kk--Means ClusteringMeans Clustering

Supervised Learning of CentersSupervised Learning of Centers
All the parameters being free and subject to a
standard supervised learning procedure such as
gradient descent
Define an error function

Free parameters: centers, spreads (covariance
matrices), weights

Partial DerivativesPartial Derivatives

Update EquationsUpdate Equations

Image Classification ApplicationImage Classification Application
High dimensional feature space leads to poor
generalization performance of image
classification algorithms
Indexing and retrieval of image collections in
the World Wide Web is a major challenge
Support vector machines provide much promise
in such applications.
We now describe the application of support
vector machines to the problem of image
classification

Extending Extending SVMsSVMs to the Multito the Multi--class class
CaseCase

“One against the others”
C hyperplanes for C classes

Class CJ is assigned to point X if

Description of Image Data SetDescription of Image Data Set
Corel Stock Photo collection: 200 classes each with 100
images
Two databases derived from the original collection as
follows:

Corel14
14 classes and 1400 images (100 images per category)

Classes were from the original Corel classification:
air shows, bears, elephants, tigers, Arabian horses, polar
bears, African specialty animals, cheetahs-leopards-jaguars,
bald eagles, mountains, fields, deserts, sunrises-sunsets,
night scenes

This database has many outliers, deliberately retained
Corel7

Newly designed categories
7 classes and 2670 images

airplanes, birds, boats, buildings, fish, people, vehicles

Corel14Corel14

Corel7Corel7

ColourColour HistogramHistogram
Colour is represented by a point in a
three dimensional colour space:

Hue–saturation–luminance value (HSV)
Is in direct correspondence with the RGB
space.

Sixteen bins per colour component are
selected yielding a dimension of 4096

Selection of KernelSelection of Kernel
Polynomial

Gaussian

General kernels

GaussianGaussian Radial Basis Function Radial Basis Function
Classifiers and Classifiers and SVMsSVMs

Support vector machine is indeed a radial basis
function network where

the centers correspond to the support vectors
the number of centers is the number of support
vectors
the weights and bias are all chosen automatically
using the SVM learning procedure

This procedure gives excellent results when
compared with Gaussian radial basis function
networks trained with non-SVM methods.

Experiment 1Experiment 1
For the preliminary experiment, 1400 Corel14
samples were divided into 924 training and 476
test samples
For Corel7 the 2670 samples were divided into
1375 training and test samples each
Error Rates

Experiment 2Experiment 2
Introducing Non-Gaussian Kernels

In addition to a linear SVM, the authors
employed three kernels: Gaussian,
Laplacian, sub-linear

Corel14Corel14

Corel7Corel7

Weight RegularizationWeight Regularization
Regularization is a technique that builds a
penalty function into the error function itself

increases the error on poorly generalizing networks
Feedforward neural networks with large
number and magnitude of weights generate
over-fitted network mappings that have high
curvature in pattern space
Weight regularization: Reduce the curvature
by penalizing networks that have large weight
values

Introducing a Introducing a RegularizerRegularizer
Basic idea: add a “sum of
weight squares” term
over all weights in the
network presently being
optimized
α is a weight
regularization parameter
A weight decay
regularizer needs to
treat both input-hidden
and hidden-output
weights differently in
order to work well

MATLAB SimulationMATLAB Simulation
Two-class
data for
weight
regularization
example

MATLAB Simulation MATLAB Simulation αα = 0, 0.01= 0, 0.01
Signal function Contours Weight space trajectories

MATLAB Simulation MATLAB Simulation αα = 0.1, 1= 0.1, 1
Signal function Contours Weight space trajectories

Committees of NetworksCommittees of Networks
A set of different neural network
architectures that work together to generate
an estimate of the underlying function f(X)
Each network is assumed to have been trained
on the same data distribution although not
necessarily the same data set
An averaging out of noise components reduces
the overall noise in prediction
Performance can actually improve at a minimal
computational cost when using a committee of
networks

Architecture of Committee Network Architecture of Committee Network

N2

N1

NN

AVGX S

Averaging Reduces the ErrorAveraging Reduces the Error
Analysis shows
that the error
can only reduce
on averaging
Assume

Mixtures of ExpertsMixtures of Experts
Learning a map is decomposed into the problem of
learning mappings over different regions of the
pattern space
Different networks are trained over those regions
Outputs of these individual networks can then be
employed to generate an output for the entire pattern
space by appropriately selecting the correct networks’
output
Latter task can be done by a separate gating network
The entire collection of individual networks together
with the gating network is called the mixture of
experts model

