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Learning from ExamplesLearning from Examples
Learning from examples is natural in human 
beings

Central to the study and design of artificial 
neural systems. 

Objective in understanding learning mechanisms 
Develop software and hardware that can learn 
from examples and exploit information in 
impinging data.
Examples:

bit streams from radio telescopes around the globe
100 TB on the Internet



GeneralizationGeneralization
Supervised systems learn from a training 
set T = {Xk, Dk} Xk∈ℜn , Dk∈ℜ
Basic idea: Use the system (network) in 
predictive mode ypredicted = f(Xunseen)
Another way of stating is that we require 
that the machine be able to successfully 
generalize.

Regression: ypredicted is a real random variable
Classification: ypredicted is either +1, -1



ApproximationApproximation
Approximation results discussed in Chapter 6 
give us a guarantee that with a sufficient 
number of hidden neurons it should be possible 
to approximate a given function (as dictated by 
the input–output training pairs) to any 
arbitrary level of accuracy.
Usefulness of the network depends primarily 
on the accuracy of its predictions of the 
output for unseen test patterns.



Important NoteImportant Note
Reduction of the mean squared error on the 
training set to a low level does not guarantee 
good generalization!
Neural network might predict values based on 
unseen inputs rather inaccurately, even when 
the network has been trained to considerably 
low error tolerances.
Generalization should be measured using test 
patterns similar to the training patterns

patterns drawn from the same probability 
distribution as the training patterns.



Broad ObjectiveBroad Objective
To model the generator function as 
closely as possible so that the network 
becomes capable of good generalization. 
Not to fit the model to the training data 
so accurately that it fails to generalize 
on unseen data.



Example of Example of OverfittingOverfitting
Networks with too many 
weights (free parameters)  
overfits training data too  
accurately and fail to 
generalize
Example:

7 hidden node feedforward
neural network 
15 noisy patterns that 
describe the deterministic 
univariate function (dashed 
line).
Error tolerance 0.0001. 
Network learns each data 
point extremely accurately
Network function develops 
high curvature and fails to 
generalize



Occam’sOccam’s Razor PrincipleRazor Principle
William Occam, c.1280–1349

No more things should be presumed to exist 
than are absolutely necessary.

Generalization ability of a machine is 
closely related to 

the capacity of the machine (functions it can 
represent)
the data set that is used for training.



Statistical Learning TheoryStatistical Learning Theory
Proposed by Vapnik
Essential idea: Regularization

Given a finite set of training examples, the search 
for the best approximating function must be 
restricted to a small space of possible 
architectures.
When the space of representative functions and 
their capacity is large and the data set small, the 
models tend to over-fit and generalize poorly. 

Given a finite training data set, achieve the 
correct balance between accuracy in training on 
that data set and the capacity of the machine 
to learn any data set without error.



Optimal Neural NetworkOptimal Neural Network
Recall from Chapter 7 the sum of squares error 
function

Optimal neural network satisfies

Residual error: 
average training 
data variance 
conditioned on 
the input

The optimal network function we are in search of minimizes 
the error by trying to make the first integral zero



Training Dependence on DataTraining Dependence on Data
Network deviation from the desired average is 
measured by

Deviation depends on a particular instance of a 
training data set
Dependence is easily eliminated by averaging 
over the ensemble of data sets of size Q



Causes of Error: Bias and VarianceCauses of Error: Bias and Variance

Bias: network function itself differs 
from the regression function E[d|X]

Variance: network function is sensitive 
to the selection of the data set

generates large error on some data sets 
and small errors on others.



Quantification of Bias & VarianceQuantification of Bias & Variance

Consequently,



BiasBias--Variance DilemmaVariance Dilemma
Separation of the ensemble average into the bias and 
variance terms:

Strike a balance between the ratio of training set size 
to network complexity such that both bias and variance 
are minimized.

→ Good generalization
Two important factors for valid generalization

the number of training patterns used in learning
the number of weights in the network



Stochastic Nature of Stochastic Nature of TT
T is sampled stochastically
Xk ⊂ X ∈ ℜn, dk ⊂ D ∈ ℜ
Xk does not map uniquely 
to an element, rather a 
distribution
Unkown probability 
distribution p(X,d) defined 
on X × D determines the 
probability of observing 
(Xk, dk)

Xk
dk

X
P(X)

D
P(d|x)



Risk FunctionalRisk Functional
To successfully solve the regression or 
classification task, a neural network  learns 
an approximating function f(X, W)
Define the expected risk as

The risk is a function of functions f drawn 
from a function space F



Loss FunctionsLoss Functions
Square error function

Absolute error function

0-1 Loss function



Optimal FunctionOptimal Function
The optimal function fo minimizes the 
expected risk R[f]

fo defined by optimal parameters; Wo is 
the ideal estimator
Remember: p(X,d) is unknown, and fo has 
to be estimated from finite samples
fo cannot be found in practice!



Empirical Risk Minimization (ERM)Empirical Risk Minimization (ERM)

ERM principle is an induction principle 
that we can use to train the machine 
using the limited number of data samples 
at hand
ERM generates a stochastic 
approximation of R using T called the 
empirical risk Re



Empirical Risk Minimization (ERM)Empirical Risk Minimization (ERM)

The best minimizer of the empirical risk 
replaces the optimal function fo
ERM replaces R by Re and fo by
Question:

Is the minimizer close to fo ?

f̂

f̂



Two Important Sequence LimitsTwo Important Sequence Limits
To ensure minimizer close to fo we need 
to find the conditions for consistency of 
the ERM principle.
Essentially requires specifying the 
necessary and sufficient conditions for 
convergence of the following two limits 
of sequences in a probabilistic sense.

f̂



First LimitFirst Limit
Convergence of the values of expected risks           
of functions      ,Q = 1,2,… that minimize the 
empirical risk            over training sets of size 
Q, to the minimum of the true risk

Another way of saying that solutions found 
using ERM converge to the best possible 
solution.

]Q̂fR[
Qf̂

]Q̂e f[R



Second LimitSecond Limit
Convergence of the values of empirical risk              
Q = 1,2,… over training sets of size Q, to the 
minimum of the true risk

This amounts to stating that the empirical risk 
converges to the value of the smallest risk.
Leads to the Key Theorem by Vapnik and 
Chervonenkis

]ˆ
Qe f[R



Key TheoremKey Theorem
Let L(d,f(X,W)) be a set of functions with a bounded loss for 
probability measure p(X,d) :

Then for the ERM principle to be consistent, it is necessary 
and sufficient that the empirical risk Re[f] converge 
uniformly to the expected risk R[f] over the set L(d,f(X,W))
such that

This is called uniform one-sided convergence in probability



Points to Take HomePoints to Take Home
In the context of neural networks, each 
function is defined by the weights W of 
the network.
Uniform convergence Theorem and VC 
Theory ensure that W which is obtained 
by minimizing Re also minimizes R as the 
number Q of data points increases 
towards infinity.



Points to Take HomePoints to Take Home
Remember: we have a finite data set to 
train our machine. 
When any machine is trained on a 
specific data set (which is finite) the 
function it generates is a biased 
approximant which may minimize the 
empirical risk or approximation error, 
but not necessarily the expected risk or 
the generalization error.



Indicator Functions and Indicator Functions and LabellingsLabellings

Consider the set of indicator functions
F = {f(X,W)} mapping points in ℜn into {0,1}
or {-1,1}.

Labelling: An assignment of 0,1 to Q
points in ℜn

Q points can be labelled in 2Q ways



LabellingsLabellings in 3in 3--dd

(d)(c)(b)(a)

(g) (h)(e) (f)

Three points in RR2 can be labelled in eight different ways.
A linear oriented decision boundary can shatter all eight labellings.



Vapnik–Chervonenkis Dimension
If the set of indicator functions can 
correctly classify each of the possible 
2Q labellings, we say the set of points is 
shattered by F.
The VC-dimension h of a set of functions
F is the largest set of points that can be 
shattered by the set in question.



VCVC--Dimension of Linear Decision Dimension of Linear Decision 
Functions in Functions in ℜℜ22 is 3is 3

Labelling of four points in 
ℜℜ2 that cannot be 
correctly separated by a 
linear oriented decision 
boundary

A quadratic decision  
boundary can separate 
this labelling!



VCVC--Dimension of Linear Decision Dimension of Linear Decision 
Functions in Functions in ℜℜnn

At most n+1 points can be shattered by 
oriented hyperplanes in ℜℜn

VC-dimension is n+1
Equal to the number of free parameters



Growth FunctionGrowth Function
Consider Q points in ℜℜn

NXQ labellings can be shattered by F
NXQ ≤ 2Q

Growth function

ln2 Q)(N sup lnG(Q)
Q

Q

X
X

≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=



Growth Function and VC DimensionGrowth Function and VC Dimension

Nothing in between 
these is allowed

The point of deviation is 
the VC-dimension

G(Q)

h Q



Towards Complexity ControlTowards Complexity Control
In a machine trained on a given training set the 
appoximants generated are naturally biased 
towards those data points.
Necessary to ensure that the model chosen for 
representation of the underlying function has a 
complexity (or capacity) that matches the data 
set in question.
Solution: structural risk minimization
Consequence of VC-theory

The difference between the empirical and expected 
risk can be bounded in terms of the VC-dimension.



VCVC--Confidence, Confidence LevelConfidence, Confidence Level
For binary classification loss functions 
which take on values either 0,1, for some 
0≤η≤1 the following bound holds with 
probability at least 1-η:

VCVC--confidence holds with confidence level confidence holds with confidence level 1-η
Empirical error



Structural Risk MinimizationStructural Risk Minimization
Structural Risk Minimization (SRM):

Minimize the combination of the empirical risk and the 
complexity of the hypothesis space.

Space of functions F is very large, and so restrict the 
focus of learning to a smaller space called the 
hypothesis space.
SRM therefore defines a nested sequence of 
hypothesis spaces

F1 ⊂ F2 ⊂… ⊂ Fn ⊂…

VC-dimensions h1≤ h2 ≤ … ≤ hn ≤ …
Increasing complexity



Nested Hypothesis Spaces form a Nested Hypothesis Spaces form a 
StructureStructure

F1 F2 F3 Fn… …

VC-dimensions h1 ≤ h2 ≤ … ≤ hn ≤ …



Empirical and Expected Risk Empirical and Expected Risk 
MinimizersMinimizers

minimizes the empirical error over the Q
points in space Fi

Is different from      the true minimizer of the 
expected risk R in Fi

Qi,f̂

if̂



A TradeA Trade--offoff

Successive models have greater flexibility such that 
the empirical error can be pushed down further.
Increasing i increases the VC-dimension and thus the 
second term
Find Fn(Q), the minimizer of the r.h.s.
Goal: select an appropriate hypothesis space to match 
the training data complexity to the model capacity.
This gives the best generalization.



Approximation Error: BiasApproximation Error: Bias
Essentially two costs associated with the 
learning of the underlying function.
Approximation error, EA:

Introduced by restricting the space of possible 
functions to be less complex than the target space
Measured by the difference in the expected risks 
associated with the best function and the optimal 
function that measures R in the target space
Does not depend on the training data set; only on 
the approximation power of the function space



Estimation Error: VarianceEstimation Error: Variance
Now introduce the finite training set with 
which we train the machine.
Estimation Error, EE:

Learning from finite data minimizes the empirical 
risk; not the expected risk.
The system thus searches a minimizer of the 
expirical risk; not the expected risk
This introduces a second level of error.

Generalization error = EA +EE



A Warning on Bound AccuracyA Warning on Bound Accuracy
As the number of training points increase, the 
difference between the empirical and expected 
risk decreases.
As the confidence level increases (η becomes 
smaller), the VC confidence term becomes 
increasingly large.
With a finite set of training data, one cannot 
increase the confidence level indefinitely:

the accuracy provided by the bound decreases!
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Machines



OriginsOrigins
Support Vector Machines (SVMs) have a firm 
grounding in the VC theory of statistical learning
Essentially implements structural risk minimization
Originated in the work of Vapnik and co-workers at 
the AT&T Bell Laboratories
Initial work focussed on 

optical character recognition
object recognition tasks

Later applications
regression and time series prediction tasks



ContextContext
Consider two sets of data points that 
are to be classified into one of two 
classes C1, C2
Linear indicator functions (TLN
hyperplane classifiers) which is the 
bipolar signum function
Data set is linearly separable
T = {Xk, dk}, Xk ∈ℜn, dk ∈ {-1,1}
C1: positive samples C2: negative samples



SVM Design ObjectiveSVM Design Objective
Find the hyperplane that maximizes the 
margin

Class 2

Class 1

Class 2

Class 1

Distance to closest 
points on either 
side of hyperplane



Hypothesis SpaceHypothesis Space
Our hypothesis space is the space of functions

Similar to Perceptron, but now we want to 
maximize the margins from the separating
hyperplane to the nearest positive and negative 
data points.
Find the maximum margin hyperplane for the 
given training set.



Definition of MarginDefinition of Margin
The perpendicular 
distance to the 
closest positive 
sample (d+) or 
negative sample (d-) 
is called the margin Class 2

Class 1

d+

d-X-

X+



Reformulation of Classification Reformulation of Classification 
CriteriaCriteria

Originally

Reformulated as

Introducing  a margin ∆ so that the hyperplane
satisfies



Canonical Separating Canonical Separating HyperplanesHyperplanes

Satisfy the constraint  ∆ = 1
Then we may write

or more compactly



NotationNotation
X+ is the data point from 
C1 closest to hyperplane
Π, and XΠ is the unique 
point on Π that is 
closest to X+

Maximize d+
d+ = || X+ - XΠ ||

From the defining equation 
of hyperplane Π,

Class 1

XΠ

d+

X+Π



Expression for the MarginExpression for the Margin
Defining equations of
hyperplane yield

Noting that X+ - XΠ is also 
perpendicular to Π

Eventually yields

Total margin



Support VectorsSupport Vectors
Vectors on the margin 
are the support 
vectors, and the total 
margin is 2/llWll

Class 1
Margin

Total Margin

Π-

Π

Π+

support vectors



SVM and SRMSVM and SRM
If all data point lie within an n-dimensional hypersphere
of radius ρ then the set of indicator functions

has a VC-dimension that satisfies the following bound

Distance to closest point is 1/||W||
Constrain ||W|| ≤ A then the distance from the
hyperplane to the closest data point must be greater 
than 1/A. Therefore, Minimize ||W||



SVM Implements SRMSVM Implements SRM

An SVM implements 
SRM by constraining 
hyperplanes to lie 
outside hyperspheres
of radius 1/A

radius
1/A

ρ



Objective of the Support Vector Objective of the Support Vector 
MachineMachine

Given T = {Xk, dk}, Xk ∈ℜn, dk ∈ {-1,1}
C1: positive samples C2: negative samples
Attempt to classify the data using the smallest 
possible weight vector norm ||W|| or ||W||2

Maximize the margin 1/||W||
Minimize

subject to the constraints



Method of Lagrange MultipliersMethod of Lagrange Multipliers
Used for two reasons

the constraints on the Lagrangian multipliers 
are easier to handle; 
the training data appear in the form of dot 
products in the final equations a fact that 
we extensively exploit in the non-linear 
support vector machine.



Construction of the Construction of the LagrangianLagrangian
Formulate problem in primal space
Λ = (λ1, …, λQ), λi ≥ 0 is a vector of 
Lagrange multipliers

Saddle point of Lp is the solution to the 
problem



Shift to Dual SpaceShift to Dual Space
Makes the optimization problem much cleaner 
in the sense that requires only maximization of 
λi

Translation to the dual form is possible 
because both the cost function and the 
constraints are strictly convex. 
Kuhn–Tucker conditions for the optimum of a 
constrained optimization problem are invoked 
to effect the translation of Lp to the dual 
form



Shift to Dual SpaceShift to Dual Space
Partial derivatives of Lp with respect to 
the primal variables must vanish at the 
solution points

D = (d1,…dQ)T is the vector of desired 
values



KuhnKuhn––Tucker Tucker ComplementarityComplementarity
ConditionsConditions

Constraint
Must be satisfied with equality

Yields the dual formulation



Final Dual Optimization ProblemFinal Dual Optimization Problem
Maximize

with respect to the Lagrange multipliers, 
subject to the constraints:

Quadratic programming optimization problem



Support VectorsSupport Vectors
Numeric optimization yields optimized Lagrange 
multipliers

Observation: some Lagrange multipliers go to 
zero.
Data vectors for which the Lagrange 
multipliers are greater than zero are called 
support vectors.
For all other data points which are not support 
vectors, λi = 0.

T
Q1 )λ,...,(λΛ =ˆ



Optimal Weights and BiasOptimal Weights and Bias
ns is the number of 
support vectors

Optimal bias 
computed from the 
complementarity
conditions 
Usually averaged 
over all support 
vectors and uses 
Hessian



Classifying an Unknown Data PointClassifying an Unknown Data Point

Use a linear indicator function:



MATLAB Code: Linear SVM Linearly MATLAB Code: Linear SVM Linearly 
Separable CaseSeparable Case

f = -ones(q,1); %Vectors of ones
% Parameters for the Optimization problem
numeqconstraints = 1; % Number of equality 

constraints = 1
A = D’; % Set up the equality constraint
b = 0;
vlb = zeros(q,1); % Lower bound of lambdas = 0
vub = Inf*ones(q,1); % No upper bound
x0 = zeros(q,1); % Initial point is 0
%Invoke MATLAB’s standard qp function for 

quadratic optimization...
[lambda alpha how] = qp(H, f, A, b, vlb, vub, x0, 

numeqconstraints);
svindex= find(lambda > epsilon);% Support vector 

indices
ns = length(svindex); % Number of support 

vectors
w_0 = (1/ns)*sum(D(svindex) - ...% Optimal bias
H(svindex,svindex)*lambda(svindex).*D(svindex));

X=[0.5 0.5 % Data points
0.5 1.0
1. 1.5
1.5 0.5
1.5 2.0
2.0 1.0
2.5 2.0
2.5 2.5];
D=[-1 -1 -1 -1 1 1 1 1]’;% Corresponding 

classes
q = size(X,1); % Size of data set
epsilon = 1e-5; % threshold for checking 

support vectors
H = zeros(q,q); % Initialize Hessian matrix
for i = 1:q % Set up the Hessian
for j = 1:q
H(i,j) = D(i)*D(j)*X(i,:)*X(j,:)’;
end
end
...



Simulation ResultSimulation Result
Details of linearly separable data, support vectors and 
Lagrange multipliers values after optimization



Simulation ResultSimulation Result

(a) Class 1 data (triangles) and Class 2 data (stars) plotted against a shaded background 
indicating the magnitude of the hyperplane: large negative values are black; large positive values 
are white. The class separating boundary (solid line) is shown along with the margins (dotted 
lines). Four support vectors are visible. (b) Intersection of the hyperplane and the indicator 
function gives the class separating boundaries and the margins. These are also indicated by the 
contour lines



Soft Margin Soft Margin HyperplaneHyperplane ClassifierClassifier
For non-linearly separable data classes 
overlap
Constraint                                    cannot be 
satisfied for all data points
Optimization procedure will go on increasing 
the dual Lagrangian to arbitrarily large 
values
Solution: Permit the algorithm to misclassify 
some of the data points albeit with an 
increased cost 
A soft margin is generated within which all 
the misclassified data lie



Soft Margin ClassifierSoft Margin Classifier

Class 1
Π+

Π

d(X1)=1-ξ1

d(x)=0

d(x)=1

d(x)=-1

X1

d(X2)=-1+ξ2

X2

Class 2

Π-



Slack VariablesSlack Variables
Introduce Q slack variables ξi

Data point is misclassified if the 
corresponding slack variable exceeds 
unity

Σ ξi represents an upper bound on the 
number of misclassifications



Cost FunctionCost Function
Optimization problem is modified as:

Minimize

subject to the constraints  



NotesNotes
C is a parameter that assigns a penalty to the 
misclassifications
Choose k = 1 to make the problem quadratic
Minimizing ||W||2 minimizes the VC-dimension 
while maximizing the margin
C provides a trade-off between the VC-
dimension and the empirical risk by changing 
the relative weights of the two terms in the 
objective function



LagrangianLagrangian in Primal Variablesin Primal Variables
For the re-formulated optimization 
problem



DefinitionsDefinitions
Λ = (λ1,…,λQ)T λi ≥ 0    Γ = (γ1,…,γQ)T γ ≥ 0
Ξ = (ξ1,…, ξQ)T ξ ≥ 0
Reformulate the optimization problem in 
the dual space
Invoke Kuhn–Tucker conditions for the 
optimum



Intermediate ResultIntermediate Result
Partial derivatives with respect to the primal 
variables must vanish at the saddle point.



KuhnKuhn--Tucker Tucker ComplementarityComplementarity
ConditionsConditions

These are
Which finally yields the dual formulation:

Recast into matrix form

Hessian matrix has elements Hij = di dj(Xi · Xj)



Dual Optimization ProblemDual Optimization Problem
Maximize

Subject to the constraints



Optimal Weight VectorOptimal Weight Vector
Lagrange dual for 
the non-separable 
case is identical to 
that of the 
separable case

No slack variables or 
their Lagrange 
multipliers appear
Difference: Lagrange 
multipliers now have 
an upper bound: C

Compute the optimal 
weight vector



KuhnKuhn––Tucker Tucker ComplementarityComplementarity
Application yields

And we know for support vectors, λi ≥ 0 and,

Implies that the following constraint is 
satisfied exactly:

0ξ1)wX(Wd i0ii =+−+⋅



Bounded and Unbounded Support Bounded and Unbounded Support 
VectorsVectors

Option 1
ξi = 0 ⇒ the support vector is on the margin
⇒ γi > 0 ⇒ λi < C
For support vectors on the margin 0 < λi < C
These are called unbounded support vectors

Option 2
ξi > 0 ⇒ γi = 0 ⇒ λi = C
Support vectors between the margins have their 
Lagrange multipliers equal to the bound C
These are called bounded support vectors



Computation of the BiasComputation of the Bias
By averaging over unbounded support 
vectors

Unknown data point classified using the 
indicator function



MATLAB Code: NonMATLAB Code: Non--separable separable 
Classes, Linear SVMClasses, Linear SVM

f = -ones(q,1); %Vectors of ones
% Parameters for the Optimization problem
vlb = zeros(q,1); % Lower bound of lambdas = 0
vub = C*ones(q,1); % Upper bound C
x0 = zeros(q,1); % Initial point is 0
numconstraints = 1; % Number of equality 

constraints = 1
A = D’; % Set up the equality constraint
b = 0;
%Invoke MATLAB’s standard qp function for 

quadratic optimization...
[lambda alpha how] = qp(H, f, A, b, vlb, vub, x0, 

numconstraints);
svindex= find( lambda > epsilon); %Find support 

vectors
%Find unbounded support vectors
usvindex= find( lambda > epsilon & lambda < C -

epsilon);
ns = length(usvindex);% Number of unbounded 

support vectors
w_0 = (1/ns)*sum(D(usvindex) - ... % Optimal bias
H(usvindex,svindex)*lambda(svindex).*D(usvindex

));
...

clear all;
X=[0.5 0.5 % Data points
0.5 1.0
1. 1.5
1.5 0.5
1.5 2.0
2.0 1.0
2.5 2.0
2.5 2.5];
% Corresponding classes
D=[ -1 -1 1 -1 -1 1 1 1]’;
q = size(X,1); % size of data set
epsilon = 1e-5; % threshold to check support 

vectors
C = 5; % Control parameter
H = zeros(q,q); % Initialize Hessian matrix
for i = 1:q % Set up the Hessian
for j = 1:q
H(i,j) = D(i)*D(j)*X(i,:)*X(j,:)’;
end
end



SimulationSimulation
Linearly non-separable data set, Lagrange multiplier 
values after optimization, and type of support/non-
support vector



SimulationSimulation
Same data set as 
in the linearly 
separable case, 
except for

classes of data 
points 3 and 5 
interchanged to 
make the 
problem non-
separable

Number of support 
vectors is now six
Two are 
unbounded, and 
four being bounded



Towards the NonTowards the Non--linear SVMlinear SVM
Next: 

Lay down the method of designing a support 
vector machine that has a non-linear 
decision boundary.

Ideas about the linear SVM are directly 
extendable to the non-linear SVM using 
an amazingly simple technique that is 
based on the notion of an inner product 
kernel.



Feature Space MapsFeature Space Maps
Basic idea: 

Map the data points using a feature space map into a 
very high dimensional feature space H

Non-separable data become linearly separable 
Work on a linear decision boundary in that space

Map everything back to the original pattern space



Pictorial Representation of NonPictorial Representation of Non--
linear SVM Design Philosophylinear SVM Design Philosophy

Low dimensional X space High dimensional feature space

Class 1

Class 2

Class 1

Class 2

Linear separating
boundary in feature 
space  maps to non-
linear boundary  in X
space

Inner product of feature vectors
φ(Xi) . φ(Xj)

Kernel function evaluation
K(Xi, Xj)



Kernel FunctionKernel Function
Note: X values of the training data appear in 
the Hessian term Hij only in the form of dot 
products
Search for a “Kernel Function” that satisfies

Allows us to use K(Xi, Xj) directly in our 
equations without knowledge of the map!



Example: Computing Feature Space Example: Computing Feature Space 
Inner Products via Kernel FunctionsInner Products via Kernel Functions

Assume X = x, Φ(x) = (1,x,x2,…,xm)
Choose al = 1, l = 1,…,m, and the decision surface 
is a polynomial in x
The inner product Φ(x) · Φ(y) = 
(1,x,x2,…,xm)T(1,y,y2,…,ym) = 1 + xy + (xy)2 + (xy)m

is polynomial of degree m
Computing in high dimensions can become 
computationally very expensive…



An Amazing TrickAn Amazing Trick
Careful choice of the coefficients can 
change everything!
Example: Choosing
Yields

A “kernel” function evaluation equals the 
inner product, making computation 
simple.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

l
m

al

m
m

0l

l xy)(1(xy)
l
m

Φ(y)Φ(x) +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⋅ ∑

=



ExampleExample
X = (x1, x2)T

Input space ℜ2

Feature space ℜ6 :

Admits the kernel function
)xx2,x,x,x2,x2(1, Φ(X) 21

2
2

2
121=

2XY)(1 Φ(Y)Φ(X)  Y)K(X, +=⋅=



NonNon--Linear SVM Linear SVM DiscriminantDiscriminant with with 
Polynomial Kernel FunctionsPolynomial Kernel Functions

Using kernel functions for inner products the 
SVM discriminant becomes

This is a non-linear decision boundary in input 
space generated from a linear superposition of 
ns kernel function terms
This requires the identification of suitable 
kernel functions that can be employed



Mercer’s ConditionMercer’s Condition
There exists a mapping Φ and an expansion of a 
symmetric kernel function

iff

such that



Inner Product Kernels (1)Inner Product Kernels (1)
Polynomial discriminant functions

admit the kernel function



Inner Product Kernels (2)Inner Product Kernels (2)
Radial basis indicator functions of the form

admit the kernel function



Inner Product Kernels (3)Inner Product Kernels (3)
Neural network indicator functions of the form

admit the kernel function



Operational Summary of SVM  Operational Summary of SVM  
Learning AlgorithmLearning Algorithm



Operational Summary of SVM  Operational Summary of SVM  
Learning AlgorithmLearning Algorithm



MATLAB Code Segment for MATLAB Code Segment for 
Hessian ComputationHessian Computation
% All code same as for linear SVM non-separable data
% Code snippet shown for polynomial kernel

ord = 2; % Order of polynomial kernel
H = zeros(q,q); % Initialize Hessian matrix

for i = 1:q % Set up the Hessian
for j = 1:q
H(i,j) = D(i)*D(j)*(X(i,:)*X(j,:)’ + 1)ˆ ord;

end
end



SVM Computations Portrayed as a SVM Computations Portrayed as a 
FeedforwardFeedforward Neural Network!Neural Network!

K(X,X1)

K(X,X2)

K(X,Xns)

Σ

X1

……

X

X1

Xns

111 dλw ˆ=

222 dλw ˆ=

nsnsns dλw ˆ=

Applied
Test vector

Support 
Vector

Kernel 
function 

layer

Weights as products
Of Lagrange multipliers

and desired values



XOR SimulationXOR Simulation
XOR Classification, C = 3, Polynomial kernel (Xi

TXj +1)2

Margins and class separating boundary using a 
second order polynomial kernel function and non-line

Intersection of the signum indicator 
ar polynomial surface



XOR SimulationXOR Simulation
Data specification for the XOR classification problem 
with Lagrange multiplier values after optimization



NonNon--linearly Separable Data linearly Separable Data 
Scatter SimulationScatter Simulation

C = 10: Stress on large margin sacrifice classification 
accuracy



NonNon--linearly Separable Data linearly Separable Data 
Scatter SimulationScatter Simulation

C = 10



NonNon--linearly Separable Data linearly Separable Data 
Scatter SimulationScatter Simulation

C= 150: Small margin, high classification accuracy



NonNon--linearly Separable Data linearly Separable Data 
Scatter SimulationScatter Simulation

C = 150



Support Vector Machines for Support Vector Machines for 
RegressionRegression

The outputs can take on real values, and thus 
the training data now take on the form T = {Xk, 
dk} Xk ∈ ℜn, dk ∈ ℜ
Find the functional that models the 
dependence of d on X in a probabilistic sense
Support vector machines for regression 
approximate functions of the form

High dimensional feature vector



Measure of the Approximation ErrorMeasure of the Approximation Error

Vapnik introduced a more general error 
function called the ε-insensitive loss 
function

No loss if error range within ±ε
Loss equal to linear error - ε if error 
greater than ±ε



εε--Insensitive Loss FunctionInsensitive Loss Function



Minimization ProblemMinimization Problem
Assume the empirical risk

subject to

Introduce two sets of slack variables ξi, 
ξi’ for each of Q input patterns



Cost FunctionalCost Functional
Define

The empirical risk minimization problem is then 
equivalent to minimizing the functional



Primal Variable Primal Variable LagrangianLagrangian
Slack variables Ξ = (ξ1,…, ξQ)T Ξ = (ξ1’,…, ξQ’)T

Lagrange multipliers Γ = (γ1,… γQ)T Λ = (λ1,… λQ)T 

Γ’ = (γ1’,… γQ’)T Λ = (λ1’,… λQ’)T



Saddle Point Saddle Point BehaviourBehaviour



Simplified Dual FormSimplified Dual Form
Substitution results in the dual form



Dual Dual LagrangianLagrangian in Vector Formin Vector Form
Maximize

subject to the constraints Hij = K(Xi, Xj)
D = (d1, …, dQ)T

1 = (1,…,1)T



Optimal Weight VectorOptimal Weight Vector
For ns support vectors



Computing the Optimal BiasComputing the Optimal Bias
Invoke Kuhn-Tucker complementarity

Substitution of the optimal weight vector 
yields



SimulationSimulation
Regression 
on noisy 
hyperbolic 
tangent data 
scatter
Third order 
polynomial 
kernel
ε=0.05, C=10



SimulationSimulation
Regression 
on noisy 
hyperbolic 
tangent data 
scatter
Eight order 
polynomial 
kernel
ε=0.00005, 
C=10



Simulation: Zoom PlotSimulation: Zoom Plot
Eight order 
polynomial 
kernel
ε=0.00005, 
C=10
Shows the 
fine margin, 
and the 
support 
vector
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Radial Basis Radial Basis 
Function NetworksFunction Networks



Radial Basis Function NetworksRadial Basis Function Networks
Feedforward neural networks

compute activations at the hidden neurons 
using an exponential of a [Euclidean] 
distance measure between the input vector 
and a prototype vector that characterizes 
the signal function at a hidden neuron.

Originally introduced into the literature 
for the purpose of interpolation of data 
points on a finite training set



Interpolation ProblemInterpolation Problem
Given T = {Xk, dk} Xk ∈ ℜn, dk ∈ ℜ
Solving the interpolation problem means finding 
the map f(Xk) = dk, k = 1,…,Q (target points are 
scalars for simplicity of exposition)
RBFN assumes a set of exactly Q non-linear 
basis functions φ(||X - Xi||)
Map is generated using a superposition of these



Exact Interpolation EquationExact Interpolation Equation
Interpolation conditions

Matrix definitions

Yields a compact matrix 
equation



MichelliMichelli FunctionsFunctions
Gaussian functions

Multiquadrics

Inverse multiquadrics



Solving the Interpolation ProblemSolving the Interpolation Problem
Choosing Φ correctly ensures invertibility: W = 
Φ-1 D
Solution is a set of weights such that the 
interpolating surface generated passes through 
exactly every data point
Common form of Φ is the localized Gaussian
basis function with center µ and spread σ



Radial Basis Function NetworkRadial Basis Function Network

φ1

φ2

x1

φQ

Σ

x2

xn



Interpolation ExampleInterpolation Example
Assume a noisy data scatter of Q = 10
data points
Generator: 2 sin(x) + x
In the graphs that follow:

data scatter (indicated by small triangles) is 
shown along the generating function (the 
fine line)
interpolation shown by the thick line



InterpolantInterpolant: Smoothness: Smoothness--AccuracyAccuracy
σ = 1 σ = 0.3



Derivative Square FunctionDerivative Square Function
σ = 1 σ = 0.3



NotesNotes
Making the spread factor smaller

makes the function increasingly non-smooth
being able to achieve a 100 per cent mapping accuracy on 
the ten data points rather than smoothness of the 
interpolation

Quantify the oscillatory behaviour of the interpolants by 
considering their derivatives 

Taking the derivative of the function
Square it (to make it positive everywhere) 
Measure the areas under the curves

Provides a nice measure of the non-smoothness—the 
greater the area, the more non-smooth the function!



Problems…Problems…
Oscillatory behaviour is highly undesirable for 
proper generalization
Better generalization is achievable with 
smoother functions which are fitted to noisy 
data
Number of basis functions in the expansion is 
equal to the number of data points!

Not possible to have for real world data sets can be 
extremely large
Computational and storage requirements for can 
explode very quickly



The RBFN SolutionThe RBFN Solution
Choose the number of basis functions to be 
some number q < Q
No longer restrict the centers of the basis 
functions to be fixed to the data point values. 

Now made trainable parameters of the model
Spreads of each of the basis functions is 
permitted to be different and trainable. 

Learning can be done either by supervised or 
unsupervised techniques

A bias is included in the final linear 
superposition



Interpolation with Fewer than Q Interpolation with Fewer than Q 
Basis FunctionsBasis Functions

Assume centers and spreads of the basis 
functions are optimized and fixed
Proceed to determine the hidden–output 
neuron weights using the procedure 
adopted in the interpolation case



Solving the Problem in a Least Solving the Problem in a Least 
Squares SenseSquares Sense

To formalize this, consider interpolating a set 
of data points with a number q < Q
Then,

Introduce the notion of error since the 
interpolation is not exact



Compute the Optimal WeightsCompute the Optimal Weights
Differentiating w.r.t. wi and setting it 
equal to zero

Then



PseudoPseudo--InverseInverse
This yields

where

Equation solved using
singular value decomposition

Pseudo-inverse
(is not square: q × Q)



Two ObservationsTwo Observations
Straightforward to include a bias term 
w0 into the approximation equation

Basis function is generally chosen to be 
the Gaussian



Generalizing FurtherGeneralizing Further
RBFs can be generalized to include arbitrary 
covariance matrices Ki

Universal approximator
RBFNs have the best approximation property

The set of approximating functions that RBFNs are 
capable of generating, there is one function that has 
the minimum approximation error for any given 
function which has to be approximated



Simulation ExampleSimulation Example
Consider approximating the ten noisy data 
points with fewer than ten basis functions
f(x) = 2 sin(x) + x
Five basis functions chosen for approximation

half the number of data points.
Selected to be centered at data points 1, 3, 5, 
7 and 9 (data points numbered from 1 through 
10 from left to right on the graph [next slide])



Simulation ExampleSimulation Example
σ = 0.5 σ = 1



Simulation ExampleSimulation Example
σ = 5 σ = 10



MATLAB Code for RBFNMATLAB Code for RBFN
% Compute pseudo inverse
pseudoinv = inv(phi’ * phi) * phi’;
W = pseudoinv * d; % Compute weights
% Generate phi matrixfor test data

for i = 1:testpts
k=1;
for j = 1:Q/2

testphi(i,j) = exp(-(testx(i)-
x(k))ˆ2/(2*sigmaˆ2));

k=k+2;
end

end

% Generate approximant
f = testphi* W;
...

Q = 10; % 10 data points
noise = 0.6; % additive noise 
x= linspace(-2*pi,2*pi,Q); % X samples 
scatter = (2*rand(1,Q) - 1)*noise; 
d = (2*sin(x) + x + scatter)’; % Y data
testpts = 100; % Number of test data
testx= linspace(-2*pi, 2*pi, testpts);
testy = (2*sin(testx) + testx)’; 
sigma = .5; 

for i = 1:Q
k=1;
for j = 1:Q/2 

phi(i,j) = exp(-(x(i)-
x(k))ˆ2/(2*sigmaˆ2));

k=k+2; 
end

end



RBFN Classifier to Solve the XOR 
Problem

Will serve to show 
how a bias term is 
included at the 
output linear neuron

RBFN classifier is 
assumed to have two 
basis functions 
centered at data 
points 1 and 4



Visualizing the Basis FunctionsVisualizing the Basis Functions



RBFN ArchitectureRBFN Architecture

+1
x1 φ1

φ2

Σ

w1

w2
f

x2

Basis functions centered 
at data points 1 and 4



Finding the SolutionFinding the Solution
We have the D, W, Φ
vectors and matrices 
as shown alongside

Pseudo inverse Weight vector



Visualization of SolutionVisualization of Solution



Ill Posed, Well Posed ProblemsIll Posed, Well Posed Problems
Ill-posed problems originally identified by Hadamard in 
the context of partial differential equations.
Problems are well-posed if their solutions satisfy three 
conditions:

they exist
they are unique
they depend continuously on the data set

Problems that are not well posed are ill-posed
Example

differentiation is an ill-posed problem because some 
solutions need not depend continuously on the data
inverse kinematics problem which maps external real 
world movements into an internal coordinate system



Approximation Problem is Ill PosedApproximation Problem is Ill Posed
The solution to the problem is not unique
Sufficient data is not available to reconstruct the mapping 
uniquely
Data points are generally noisy
The solution to the ill-posed approximation problem lies in 
regularization

essentially requires the introduction of certain constraints 
that impose a restriction on the solution space

Necessarily problem dependent
Regularization techniques impose smoothness constraints 
on the approximating set of functions.
Some degree of smoothness is necessary for the 
representative function since it has to be robust against 
noise.



Regularization Risk FunctionalRegularization Risk Functional
Assume training data T generated by 
random sampling of the function
Regularization techniques replace the 
standard error minimization problem 
with minimization of a regularization risk 
functional



TikhonovTikhonov FunctionalFunctional
Regularization risk functional comprises 
two terms

error function smoothness functional

intuitively appealing to consider using
function derivatives to characterize smoothness



Regularization ParameterRegularization Parameter
The smoothness functional is expressed as

P is a linear differential operator, ||·|| is a norm 
defined on the function space (Hilbert space)

The regularization risk functional to be 
minimized is regularization parameter



EulerEuler––Lagrange EquationsLagrange Equations
We need to calculate the functional derivative
of Rr called the Frechet differential, and set it 
equal to zero

A series of algebraic steps (see text) yields 
the Euler-Lagrange equations for the Tikhonov
functional



Solving the Euler–Lagrange System
Requires the use of the Green’s function for 
the linear differential operator

Green’s function for a linear differential 
operator Q satisfies prescribed boundary 
conditions and has continuous partial 
derivatives with respect to X everywhere 
except at X = Xi where there is a singularity.
Satisfies the differential equation QG(X,Y) = 0

PPQ
~

=



Solving the Euler–Lagrange System
See algebra in the text
Yields the final solution

Linear weighted sum of Q Greens functions 
centered at the data points Xi



Quick SummaryQuick Summary
The regularization solution uses Q
Green’s functions in a weighted 
summation
The nature of the chosen Green’s 
function depends on the kind of 
differential operator P chosen for the 
regularization term of Rr



Solving for WeightsSolving for Weights
Starting point

Evaluate the 
equation at each 
data point



Solving for WeightsSolving for Weights
Introduce matrix notation



Solving for WeightsSolving for Weights
With these matrix definitions

and

Finally (!)



Euclidean Norm DependenceEuclidean Norm Dependence
If the differential operator P is 

rotationally invariant
translationally invariant

Then the Green’s function G(X,Y) depends only 
on the Euclidean norm of the difference of the 
vectors

Then



Multivariate Multivariate GaussianGaussian is a Green’s is a Green’s 
FunctionFunction

Gaussian function 
defined by

is a Green’s function 
defined by the self-
adjoint differential 
operator

The final minimizer is 
then



MATLAB Code Segment for MATLAB Code Segment for 
RBFN Regularized InterpolationRBFN Regularized Interpolation
% Code segment for Regularized Interpolation
lambda = 0.5;
for i = 1:Q
for j = 1:Q
phi(i,j) = exp(-(x(i)-x(j))ˆ2/(2*sigmaˆ2));
end
end
Wreg = inv(phi + (lambda * eye(Q))) * d’;
for k = 1:testpts
for i = 1:Q
phitest(k,i) = exp(-(testx(k)-x(i))ˆ2/(2*sigmaˆ2));
end
f(k) = phitest(k,:)*W_reg;
end
...



Comparing Regularized and NonComparing Regularized and Non--
regularized Interpolationsregularized Interpolations

No regularizing term 
λ = 0

Regularizing term λ = 
0.5



Comparing Regularized and NonComparing Regularized and Non--
regularized Interpolationsregularized Interpolations

No regularizing term 
λ = 0

Regularizing term λ = 
0.5



Generalized Radial Basis Function Generalized Radial Basis Function 
NetworkNetwork

We now proceed to generalize the RBFN 
in two steps

Reduce the Number of Basis Functions, 
Use Non-Data Centers
Use a Weighted Norm



Reduce the Number of Basis Reduce the Number of Basis 
Functions, Use NonFunctions, Use Non--Data CentersData Centers

The approximating function is,

Interested in minimizing the regualrized
risk



Simplifying the First TermSimplifying the First Term
Using the 
matrix 
substitutions

yields



Simplifying the Second TermSimplifying the Second Term
Use the properties of the adjoint of the 
differential operator and Green’s function

where

Finally



Using a Weighted NormUsing a Weighted Norm
Replace the standard Euclidean norm by

S is a norm-weighting matrix of dimension n×n
Substituting into the Gaussian yields

where K is the covariance matrix
With K = σ2I is a restricted form



Generalized Radial Basis Function Generalized Radial Basis Function 
NetworkNetwork

Some properties
Fewer than Q basis functions
A weighted norm to compute distances, 
which manifests itself as a general 
covariance matrix
A bias weight at the output neuron
Tunable weights, centers, and covariance 
matrices



Learning in Learning in RBFNsRBFNs
Random Subset Selection

Out of Q data points, q of them are 
selected at random
Centers of the Gaussian basis functions are 
set to those data points.

Semi-random selection
A basis function is placed at every rth data 
point



Random, SemiRandom, Semi--random Selectionrandom Selection
Spreads are a function of the maximum 
distance between chosen centers and q

Gaussians are then defined

such that 



Operational Summary of Radial Basis Operational Summary of Radial Basis 
Function NetworkFunction Network

Design assuming random placement of centers and fixed spreads



Hybrid Learning ProcedureHybrid Learning Procedure
Determine the centers of the basis 
functions using a clustering algorithm 
such as the k-means clustering algorithm
Tune the hidden to output weights using 
the LMS procedure



kk--Means ClusteringMeans Clustering



Supervised Learning of CentersSupervised Learning of Centers
All the parameters being free and subject to a 
standard supervised learning procedure such as 
gradient descent
Define an error function

Free parameters: centers, spreads (covariance 
matrices), weights



Partial DerivativesPartial Derivatives



Update EquationsUpdate Equations



Image Classification ApplicationImage Classification Application
High dimensional feature space leads to poor 
generalization performance of image 
classification algorithms
Indexing and retrieval of image collections in 
the World Wide Web is a major challenge 
Support vector machines provide much promise 
in such applications.
We now describe the application of support 
vector machines to the problem of image 
classification



Extending Extending SVMsSVMs to the Multito the Multi--class class 
CaseCase

“One against the others”
C hyperplanes for C classes

Class CJ is assigned to point X if



Description of Image Data SetDescription of Image Data Set
Corel Stock Photo collection: 200 classes each with 100 
images
Two databases derived from the original collection as 
follows:

Corel14
14 classes and 1400 images (100 images per category)

Classes were from the original Corel classification: 
air shows, bears, elephants, tigers, Arabian horses, polar 
bears, African specialty animals, cheetahs-leopards-jaguars, 
bald eagles, mountains, fields, deserts, sunrises-sunsets, 
night scenes

This database has many outliers, deliberately retained
Corel7

Newly designed categories
7 classes and 2670 images

airplanes, birds, boats, buildings, fish, people, vehicles



Corel14Corel14



Corel7Corel7



ColourColour HistogramHistogram
Colour is represented by a point in a 
three dimensional colour space:

Hue–saturation–luminance value (HSV) 
Is in direct correspondence with the RGB 
space. 

Sixteen bins per colour component are 
selected yielding a dimension of 4096



Selection of KernelSelection of Kernel
Polynomial

Gaussian

General kernels



GaussianGaussian Radial Basis Function Radial Basis Function 
Classifiers and Classifiers and SVMsSVMs

Support vector machine is indeed a radial basis 
function network where

the centers correspond to the support vectors
the number of centers is the number of support 
vectors
the weights and bias are all chosen automatically 
using the SVM learning procedure

This procedure gives excellent results when 
compared with Gaussian radial basis function 
networks trained with non-SVM methods.



Experiment 1Experiment 1
For the preliminary experiment, 1400 Corel14 
samples were divided into 924 training and 476 
test samples
For Corel7 the 2670 samples were divided into 
1375 training and test samples each
Error Rates



Experiment 2Experiment 2
Introducing Non-Gaussian Kernels

In addition to a linear SVM, the authors 
employed three kernels: Gaussian, 
Laplacian, sub-linear



Corel14Corel14



Corel7Corel7



Weight RegularizationWeight Regularization
Regularization is a technique that builds a 
penalty function into the error function itself

increases the error on poorly generalizing networks
Feedforward neural networks with large 
number and magnitude of weights  generate 
over-fitted network mappings that have high 
curvature in pattern space
Weight regularization: Reduce the curvature 
by penalizing networks that have large weight 
values



Introducing a Introducing a RegularizerRegularizer
Basic idea: add a “sum of 
weight squares” term 
over all weights in the 
network presently being 
optimized
α is a weight 
regularization parameter
A weight decay 
regularizer needs to 
treat both input-hidden 
and hidden-output 
weights differently in 
order to work well



MATLAB SimulationMATLAB Simulation
Two-class 
data for 
weight 
regularization 
example



MATLAB Simulation MATLAB Simulation αα = 0, 0.01= 0, 0.01
Signal function                                   Contours                          Weight space trajectories 



MATLAB Simulation MATLAB Simulation αα = 0.1, 1= 0.1, 1
Signal function                                   Contours                          Weight space trajectories 



Committees of NetworksCommittees of Networks
A set of different neural network 
architectures that work together to generate 
an estimate of the underlying function f(X)
Each network is assumed to have been trained 
on the same data distribution although not 
necessarily the same data set
An averaging out of noise components reduces 
the overall noise in prediction
Performance can actually improve at a minimal 
computational cost when using a committee of 
networks



Architecture of Committee Network Architecture of Committee Network 

N2

N1

NN

AVGX S



Averaging Reduces the ErrorAveraging Reduces the Error
Analysis shows 
that the error 
can only reduce 
on averaging
Assume



Mixtures of ExpertsMixtures of Experts
Learning a map is decomposed into the problem of 
learning mappings over different regions of the 
pattern space
Different networks are trained over those regions
Outputs of these individual networks can then be 
employed to generate an output for the entire pattern 
space by appropriately selecting the correct networks’ 
output
Latter task can be done by a separate gating network
The entire collection of individual networks together 
with the gating network is called the mixture of 
experts model


