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Learning from Examples

Learning from examples is natural in human

beings

B Central to the study and design of artificial
neural systems.

Objective in understanding learning mechanisms

B Develop software and hardware that can learn
from examples and exploit information in
impinging data.

B Examples:

O bit streams from radio telescopes around the globe
0 100 TB on the Internet




Generalization

Supervised systems learn from a training
set T = {Xk' Dk} Xkem” , DkEER

Basic idea: Use the system (nhetwork) in
prediCTive mode yPredic‘red = f(xunseen)

Another way of stating is that we require
that the machine be able to successfully
generalize.

B Regression: y, .4 IS a real random variable
B Classification: y, g4 iS either +1, -1




Approximation

Approximation results discussed in Chapter 6
give us a guarantee that with a sufficient
number of hidden neurons it should be possible
to approximate a given function (as dictated by
the input-output training pairs) to any
arbitrary level of accuracy.

Usefulness of the network depends primarily

on the accuracy of its predictions of the
output for unseen test patterns.




Important Note

Reduction of the mean squared error on the
training set to a low level does not guarantee
good generalization!

Neural network might predict values based on
unseen inputs rather inaccurately, even when

the network has been trained to considerably
low error tolerances.

Generalization should be measured using test
patterns similar to the training patterns

B patterns drawn from the same probability
distribution as the training patterns.




Broad Objective

To model the generator function as
closely as possible so that the network
becomes capable of good generalization.

1 Not to fit the model to the training data
so accurately that it fails to generalize
on unseen data.




Example of Overfitting

O Networks with foo many

weights (free parameters) | '
overfits training data too
accurately and fail to
generalize

OO0 Example:
B 7 hidden node feedforward
neural network

B 15 noisy patterns that
describe the deterministic
aniv)aria’re function (dashed
ine).

B Error tolerance 0.0001.
B Network learns each data

point extremely accurately

®  Network function develops
high curvature and fails to
generalize




Occam's Razor Principle

William Occam, ¢c.1280-1349

B No more things should be presumed to exist

than are absolutely necessary.
Generalization ability of a machine is
closely related to

B the capacity of the machine (functions it can
represent)

B the data set that is used for training.




Statistical Learning Theory

Proposed by Vapnik
Essential idea: Regularization

B Given a finite set of training examples, the search
for the best approximating function must be
restricted to a small space of possible
architectures.

B When the space of representative functions and
their capacity is large and the data set small, the
models tend To over-fit and generalize poorly.

Given a finite training data set, achieve the

correct balance between accuracy in training on

that data set and the capacity of the machine
to learn any data set without error.




Optimal Neural Network

Recall from Chapter 7 the sum of squares error
function

2

£ = %f(f(X, W) — E[d|X]) p(X)dX + % faz p(X)dX

Residual error:
average training
data variance
conditioned on
the input

The optimal network function we are in search of minimizes
the error by trying to make the first integral zero

Optimal neural network satisfies

f(X, W)= E[d|X]




Training Dependence on Data

Network deviation from the desired average is

measured by :
(f(X, W) — E[d|X])"

Deviation depends on a particular instance of a
training data set

Dependence is easily eliminated by averaging
over the ensemble of data sets of size Q

Eo [(f(X, W) — E[le])z}




Causes of Error: Bias and Variance

O network function itself differs
from the regression function E[d|X]

O hetwork function is sensitive
to the selection of the data set

B generates large error on some data sets
and small errors on others.




Quantification of Bias & Variance

(FO) = E[IX])’ = (£¢) = ELf Ol + Eol ()] — E[d|X])’
_ (f(.) — EQ[f(°)])2 + (EQ[f(.)] — E[le])
+2(f() = EolfON) (Eol £ ()] - Eld|X])

2

Consequently,

Eg {(m - EWJ)Z] = Eo [(fo ~ EolfO))

+ Eop |:(EQ[f(')] - E_dIX])z]




Bias-Variance Dilemma

[0 Separation of the ensemble average into the bias and
variance terms:

-
2 2

Eo [(f(-) — E[d|X]) } = (EQ[f(')] - E[dIX]) -|—EQ|:(f(') — Eol[f()]) }

(bias)? (variance)

[0 Strike a balance between the ratio of training set size
to network complexity such that both bias and variance
are minimized.

B — Good generalization

OO0 Two important factors for valid generalization
B the number of training patterns used in learning
B the number of weights in the network




Stochastic Nature of T

O T is sampled stochastically
O X,cX eR"dcDe®R

O X, does not map uniquely
to an element, rather a

distribution
0 Unkown probability
distribution p(X,d) defined
on X x D determines the X D
probability of observing "™ P(dix)

(X, di)




Risk Functional

To successfully solve the regression or
classification task, a neural network learns
an approximating function f(X, W)

Define the expected risk as

RIf] = E[L(d, J(X, W))} = fL(d, J(X, W))dp(X,d)

The risk is a function of functions f drawn
from a function space F




Loss Functions

Square error function

L(d, f(X,W))=(d — f(X,W))
Absolute error function

L, f(X,W))=l|d— f(X, W)
O-1 Loss function

0 if (X, W)=d

L{d, f(X,W)) = .
(@, J( ) 1 otherwise




Optimal Function

The optimal function f, minimizes the
expected risk R[f]

fo = f(X. W,) = argmin R f]

f, defined by optimal parameters; W, is
the ideal estimator

Remember: p(X,d) is unknown, and f_ has
to be estimated from finite samples

f, cannot be found in practicel




Empirical Risk Minimization (ERM)

cRM principle is an induction principle
that we can use to train the machine
using the limited number of data samples
at hand

ERM generates a stochastic
approximation of R using T called the
empirical risk R,

1 Q
_EZ (dy, [(X. W))
k=1




Empirical Risk Minimization (ERM)

The best minimizer of the empirical risk
replaces the optimal function f,

ERM replaces R by R, and f_ by f

Question: R
B Ts the minimizer f close to f, ?




Two Important Sequence Limits

To ensure minimizer f close to f_ we need

to find the conditions for consistency of
the ERM principle.

Essentially requires specifying the
necessary and sufficient conditions for
convergence of the following two limits
of sequences in a probabilistic sense.




First Limit

Convergence of the values of expected risks R[f ]
of functions fq ,Q = 1,2,.. that minimize the
empirical risk R .[f, ] over training sets of size

Q, to the minimum of the true risk

Jlim R[fo] —> RLf.]

Another way of saying that solutions found
using ERM converge to the best possible
solution,




Second Limit

Convergence of the values of empirical risk Re[fQ]
Q = 1,2,.. over training sets of size Q, to the
minimum of the true risk

lim R.[fo] —> RLJ]

Q— 00

This amounts to stating that the empirical risk
converges to the value of the smallest risk.

Leads to the Key Theorem by Vapnik and
Chervonenkis




Key Theorem

O Let L(d,f(X,W)) be a set of functions with a bounded loss for
probability measure p(X,d) :

A< fL(d, f(X,W)dp(X,d) <B

OO0 Then for the ERM principle to be consistent, it is necessary
and sufficient that the empirical risk R [f] converge
uniformly to the expected risk R[f] over the set L(d, f(X ,W))
such that

lim P|:sup(R[f] — R[] > e] =0,Ve >0
Q— 00 feF

O This is called wvniform one-sided convergence in probability




Points to Take Home

In the context of neural networks, each

function is defined by the weights W of
the network.

Uniform convergence Theorem and VC
Theory ensure that W which is obtained
by minimizing R, also minimizes R as the
number Q of data points increases
towards infinity.




Points to Take Home

Remember: we have a finite data set to
train our machine.

When any machine is trained on a
specific data set (which is finite) the
function it generates is a biased
approximant which may minimize the
empirical risk or approximation error,
but not necessarily the expected risk or
the generalization error.




Indicator Functions and Labellings

Consider the set of indicator functions

B F - {f(X,W)} mapping points in k" into {O,1}
or {-1,1}.

Labelling: An assignment of 0,1 t0 Q
points in K"
Q points can be labelled in 2X ways




Labellings in 3-d

Three points in R? can be labelled in eight different ways.
A linear oriented decision boundary can shatter all eight labellings.




Vapnik-Chervonenkis Dimension

If the set of indicator functions can
correctly classify each of the possible
2Q |abellings, we say the set of points is
shattered by F.

The VC-dimension h of a set of functions
F is the largest set of points that can be
shattered by the set in question.




VC-Dimension of Linear Decision

Functions in R2 is 3

Labelling of four points in
N2 that cannot be
correctly separated by a
linear oriented decision
boundary

A quadratic decision
boundary can separate
this labelling!




VC-Dimension of Linear Decision
Functions in Q"

At most n+1 points can be shattered by
oriented hyperplanes in )"

VC-dimension is n+1
Equal to the number of free parameters




Growth Function

Consider Q) points in R"

Nyq labellings can be shattered by F
Nyq < 29

Growth function

G(Q)=In [sup (NXQ )J <QIn2




Growth Function and VC Dimension

G(0) < h(ln|:]2i| + l)
h

G(Q)=QIn2

6(Q)

Nothing in between
these is allowed

\ The point of deviation is

the VC-dimension
G(h)=hIn2
Gh+1)#(h+1)In2

Q




Towards Complexity Control

In a machine trained on a given training set the
appoximants generated are naturally biased
towards those data points.

Necessary to ensure that the model chosen for
representation of the underlying function has a
complexity (or capacity) that matches the data
set in question.

Solution:

Consequence of VC-theory

B The difference between the empirical and expected
risk can be bounded in terms of the VC-dimension.




VC-Confidence, Confidence Level

For binary classification loss functions
which take on values either 0,1, for some
0<n<1 the following bound holds with
probability at least 1-n:

h(ln == 2Q + 1) — In(n/4)
0

T VC-confidence holds with confidence level 1-1

R[f] < R.[f]H \/

Empirical error




Structural Risk Minimization

O Structural Risk Minimization (SRM):

B Minimize the combination of the empirical risk and the
complexity of the hypothesis space.

[0 Space of functions F is very large, and so restrict the
focus of learning to a smaller space called the
hypothesis space.

[0 SRM therefore defines a nested sequence of
hypothesis spaces

[ FICFZC“'CFHC"'

> Increasing complexity

B VC-dimensions h;<h,< . <h <.




Nested Hypothesis Spaces form a
Structure

VC-dimensions hy<h, < . <h < .




Empirical and Expected Risk
Minimizers

A\

f. o minimizes the empirical error over the Q
points in space F;,

fi.o = argmin R[f; o]

Is different from f, the true minimizer of the
expected risk R in F,




A Trade-off

I e o it e mo pAAAGC o

h(In 22 + 1) — In(n/4
R[f]SRe[f]Jr\/ il Q) ")

Successive models have greater flexibility such that
the empirical error can be pushed down further.

Increasing | increases the VC-dimension and thus the
second term

Find F ). the minimizer of the r.h.s.

Goal: select an appropriate hypothesis space to match
the training data complexity to the model capacity.

This gives the best generalization.




Approximation Error: Bias

Essentially two costs associated with the
learning of the underlying function.

Approximation error, E ;:

B Tntroduced by restricting the space of possible
functions to be less complex than the target space

B Measured by the difference in the expected risks
associated with the best function and the optimal
function that measures R in the target space

B Does not depend on the training data set; only on
the approximation power of the function space




Estimation Error: Variance

Now introduce the finite training set with
which we train the machine.

Estimation Error, E.:

B Learning from finite data minimizes the empirical
risk; not the expected risk.

B The system thus searches a minimizer of the
expirical risk; not the expected risk

B This introduces a second level of error.
Generalization error = E, +E;




A Warning on Bound Accuracy

As the number of training points increase, the
difference between the empirical and expected
risk decreases.

As the confidence level increases () becomes
smaller), the VC confidence term becomes
increasingly large.

With a finite set of training data, one cannot
increase the confidence level indefinitely:

B the accuracy provided by the bound decreases!
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Origins

LA o e AR

Support Vector Machines (SVMs) have a firm
grounding in the VC theory of statistical learning

Essentially implements structural risk minimization

Originated in the work of Vapnik and co-workers at
the AT&T Bell Laboratories

Initial work focussed on

B optical character recognition

B object recognition tasks

Later applications

B regression and time series prediction tasks




Context

Consider two sets of data points that
are to be classified into one of two
classes C,, C,

Linear indicator functions (TLN
hyperplane classifiers) which is the
bipolar signum function

Data set is linearly separable
= {Xk' dk}' Xk 69?”, dk S {-1,1}
C,: positive samples C,: negative samples




SVM Design Objective
Find the hyperplane that maximizes the

margin

A
A A
A,
A A
A
Class 2

Class 1

Distance to closest
points on either
side of hyperplane




Hypothesis Space

Our hypothesis space is the space of functions

f(X, W, U)()) = 51gn(W - X + U)())

Similar to Perceptron, but now we want to
maximize the margins from the separating
hyperplane to the nearest positive and negative
data points.

Find the maximum margin hyperplane for the
given training set.




Definition of Margin

The perpendicular
distance to the
closest positive
sample (d,) or
negative sample (d )
is called the margin




Reformulation of Classification
Criteria

Originally
W.-X;,+wy>0 d; = +1, Class ¢
W.-X;,+wy<0 d; = —1, Class ¢,

Reformulated as
W.-X+w)>=+A di = +1
W .- X4+wy) <-—A di = —1

Introducing a margin A so that the hyperplane
satisfies

WX+ wy==xA




Canonical Separating Hyperplanes

Satisfy the constraint A =1

Then we may write

W-X4+w) < —1 d; = —1

or more compactly

di(X; - W +wy)—1>0 Vi




Notation

O X, is the data point from
C, closest to hyperplane
I1, and X, is the unique caset
point on I1 that is
closest to X,

O Maximize d,
. d+:||x+-x1'[||

OO0 From the defining equation
of hyperplane II,

W . X_|_ -+ Wy = |

W -Xg+wy=0




Expression for the Margin

0 Defining equations of O Eventually yields

hyperplane yield |
PETRE dy = | X4 — Xn|l =

W (X — X) = | 1w
O Total margin
OO0 Noting that X, - X, is also
perpendicular to I1 e R W

W
W (X —Xn)=W°(||X — X )
" i Kl

[W?
W
= [ X+ = Xnlll[W]

= [[ X+ — Xnll




Support Vectors

Vectors on the margin
Class 1 are the support
A A vectors, and the total
margin is 2/1IWI

I, Margin

support vectors

Total Margin




SVM and SRM

O If all data point lie within an n-dimensional hypersphere
of radius p then the set of indicator functions

Fo={f=sign(W-X+wo) | W] <A
O has a VC-dimension that satisfies the following bound

h < min{p°A*, n} + 1

O Distance to closest point is 1/||W/||

O Constrain ||W|]| < A then the distance from the
hyperplane to the closest data point must be greater
than 1/A. Therefore, Minimize ||W||




SVM Implements SRM

An SVM implements
SRM by constraining
hyperplanes to lie
outside hyperspheres
@ | of radius 1/A

1/A

@ ®\ radius

FAf:{fZSign(W'X+wo) | |[W < A;), Al <Ay <Az <---




Objective of the Support Vector
Machine

Given T = {X,, d,}, X, eR", d, € {-1,1}
C,: positive samples C,: negative samples

Attempt to classify the data using the smallest
possible weight vector norm ||W/|]| or ||W]|?

Maximize the margin 1/||W||
Minimize

1 2
AL A

subject to the constraints
di(X; - WH+wy)—1>0 i=1,...,0




Method of Lagrange Multipliers

Used for two reasons

B the constraints on the Lagrangian multipliers
are easier to handle;

B the fraining data appear in the form of dot
oroducts in the final equations a fact that
we extensively exploit in the non-linear
support vector machine.




Construction of the Lagrangian

Formulate problem in primal space

A= (L, ... q), 2, = 0 is a vector of
Lagrange multipliers

1 0
Lp(W.wo. A) = SIWI* = > Mldi(X; - W+ wp) — 1]
i=1

Saddle point of L, is the solution to the
problem




Shift to Dual Space

Makes the optimization problem much cleaner
in the sense that requires only maximization of
%

Translation to the dual form is possible
because both the cost function and the
constraints are strictly convex.

Kuhn-Tucker conditions for the optimum of a
constrained optimization problem are invoked
to effect the translation of Lp to the dual
form




Shift to Dual Space

Partial derivatives of L, with respect fo
the primal variables must vanish at the
solution points

AL p(W, wy, A) ¢

ey — W—Exf-d,-xf- =0

o
dL p(W, wy, A
P( Wy ):Z)wdi:A'DZO

D = (dy,..dg)" is the vector of desired
values

811)0




Kuhn-Tucker Complementarity
Conditions

Constraint di(Xi - W4+ wo)—1>0 Vi

Must be satisfied with equality
A,[d,(WX,—FwO)—l]:O, Z=1,,Q

Yields the dual formulation

Q 0

0]
Lp(A)=) & — % YO dikjdidi(Xi - X))
=1

i=1 j=1

1
Lp(A)=A-1— EATHA




Final Dual Optimization Problem

Maximize

1
Lp(A)=A-1— 5ATHA

with respect to the Lagrange multipliers,
subject to the constraints:

A-D=0
A>0

Quadratic programming optimization problem




Support Vectors

Numeric optimization yields optimized Lagrange
multipliers =
A=At Ag)"

Observation: some Lagrange multipliers go to
zero.

Data vectors for which the Lagrange
multipliers are greater than zero are called

For all other data points which are not support
vectors, . = O.




Optimal Weights and Bias

n, is the number of
support vectors

Optimal bias
computed from the
complementarity
conditions

Usually averaged
over all support
vectors and uses
Hessian

Q
W= %X
=1
= Zikdek
k=1
T)O\O —_ - — W * XS




Classifying an Unknown Data Point

Use a linear indicator function:

v(X) = sign(z d,-i,-(X - X;)+ u?o)

=1




MATLAB Code: Linear SVM Linearly

Separable Case

X=[0.5 0.5 % Data points

0510

1.15

1505

1520

2010

2520

2.5 25]

D=[-1-1-1-111117.% Corresponding
classes

q = size(X,1); % Size of data set

epsilon = 1e-5; % threshold for checking
support vectors

H = zeros(q,q); % Initialize Hessian matrix
for i = 1:q % Set up the Hessian

for j = liq
H(i ) = DGY*DY* X)X (2
end

end

f = -ones(q,1); %Vectors of ones
7 Parameters for the Optimization problem

numegqconstraints = 1; % Number of equality
constraints = 1

A = D'; % Set up the equality constraint

b=0;

vib = zeros(q,1); 7% Lower bound of lambdas = 0O
vub = Inf*ones(q,1). % No upper bound

x0 = zeros(q,1); % Initial point is O

%Invoke MATLAB's standard gp function for
quadratic optimization...

[lambda alpha how] = gp(H, f, A, b, vlb, vub, X0,
numeqconstraints);

svindex= find(lambda > epsilon);% Support vector
indices

ns = length(svindex); % Number of support
vectors

w_0 = (1/ns)*sum(D(svindex) - ...% Optimal bias

H(svindex,svindex)*lambda(svindex).*D(svindex));




Simulation Result

[0 Details of linearly separable data, support vectors and

Lagrange multipliers values after optimization

Data point  Class  Support Vector  A;
050.5 —1 No 0.0
0.51.0 —1 No 0.0
101.5 —1 Yes 2.664
1.50.5 —1 Yes 1.780
1.52.0 | Yes 1.775
201.0 | Yes 2.669
2520 | No 0.0
2525 | No 0.0




Simulation Result
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Soft Margin Hyperplane Classifier

For non-linearly separable data classes
overlap

Constraint d(x;-W-+w)—-1>0 ¥i cannot be
satisfied for all data points

Optimization procedure will go on increasing
’rhle dual Lagrangian to arbitrarily large
values

Solution: Permit the algorithm to misclassify
some of the data points albeit with an
increased cost

A IS generated within which all
the misclassified data lie




Soft Margin Classifier

Class 1

Class 2 © ° \‘\\\d(Xl):l-@l O




Slack Variables

Introduce Q slack variables ¢,

W'X——U)()Z—Fl—_é; dI:_I_l
W'X——U)QS—I—F_&' d = —1

Data point is misclassified if the

corresponding slack variable exceeds

unity

B > & represents an upper bound on the
number of misclassifications




Cost Function

Optimization problem is modified as:
B Minimize

1 Q k
2
I +c(;a)

B subject to the constraints
di(X; - WHw)—1+& >0 i=1,...,
_éf >0




Notes

C is a parameter that assigns a penalty to the
misclassifications

Choose k = 1 to make the problem quadratic
Minimizing | |W||2 minimizes the VC-dimension
while maximizing the margin

C provides a trade-off between the VC-
dimension and the by changing

the relative weights of the two terms in the
objective function




Lagrangian in Primal Variables

For the re-formulated optimization
problem

0
|
Lp(W,wo, A, E, T")= §||W||2 + C(Z Sf)
=1

0
= D Mildi(Xi - W+ wp)

=1

0
—1+&]-) v
=1




Definitions

A=) 420 T=(p..70)Ty=0

1 = = (E,»]:---, aQ)T é >0

Reformulate the optimization problem in
the dual space

Invoke Kuhn-Tucker conditions for the
optimum




Intermediate Result

Partial derivatives with respect to the primal
variables must vanish at the saddle point.

0
— W — Zx,-d,-xf — 0
=1

BLP(W, wo, A, E, F)
aoWw

0
=Y Jdi=A-D=0
=1

ILp(W, wy, A, E,T)
811)0

1)

[1]

8LP(W, Wo, A,
agi

=C—-2—yi=0




Kuhn-Tucker Complementarity
Conditions

These are »[d(W-X; +wy)—1+&]=0, i=1,....0
Which finally yields the dual formulation:
0 0

Lp(A) = Zk ——ZZAA did;(X; - X;)

=1 j=I
Recast into ma‘rmx form

1
Lp(A)=A-1— EATHA

Hessian matrix has elements H;; = d; d,(X; - Xj)




Dual Optimization Problem

Maximize

1
Lp(A)=A-1-— EATHA

Subject to the constraints

A-D=20
A>0
A <(C1




Optimal Weight Vector

Lagrange dual for Compute the optimal
the non-separable weight vector

case is identical to

that of the ) 2
separable case W="> LdX,

B No slack variables or ,-
their Lagrange s
multipliers appear =Y Mdi X

B Difference: Lagrange k=1
multipliers now have
an upper bound: C




Kuhn-Tucker Complementarity

Application yields
rldi(W-Xi+wo)—1+&|=0, i=1..,0
viEi =0, i=1,...,0
And we know for support vectors, i, > 0 and,

rit+yi=C

Implies that the following constraint is
satisfied exactly:

d(W-X. +w,)-1+€. =0




Bounded and Unbounded Support
Vectors

Option 1

B ¢ - O — the support vector is on the margin
B =y >0=>4,<C

B For support vectors on the margin O <. < C
B These are called unbounded support vectors
Option 2

B (>0=y=0=A1=C

B Support vectors between the margins have their
Lagrange multipliers equal to the bound C

B These are called bounded support vectors




Computation of the Bias

By averaging over unbounded support
vectors

wo = %[idz(l — Zu:ikal)}
N k=1

« L=

Unknown data point classified using the
indicator function

V(X) = sign(z diri(X - Xi)+ o)
=1




MATLAB Code: Non-separable
Classes, Linear SVM

clear all;

X=[0.5 0.5 % Data points
0510

1.15

1505

1520

2010

2520

25 25]

7 Corresponding classes
D=[-1-11-1-11117;

q = size(X,1); % size of data set

epsilon = le-5; % threshold to check support
vectors

C = 5. % Control parameter
H = zeros(q,q); % Initialize Hessian matrix
for i = 1:q % Set up the Hessian

for j = 1iq
H(i,j) = DGY*D()*X( ) X(.0)s
end

end

f = -ones(q,1); %Vectors of ones

% Parameters for the Optimization problem
vlb = zeros(q,1); % Lower bound of lambdas = O
vub = C*ones(q,1); % Upper bound C

x0 = zeros(q,1); % Initial point is O

numconstraints = 1; % Number of equality
constraints = 1

A = D'; % Set up the equality constraint

b=0;

%Invoke MATLAB's standard gp function for
quadratic optimization...

[lambda alpha how] = gp(H, f, A, b, vlb, vub, x0,
humconstraints);

svindex= find( lambda > epsilon); %Find support
vectors

%Find unbounded support vectors

usvindex= find( lambda > epsilon & lambda < C -
epsilon);

ns = length(usvindex);7% Number of unbounded
support vectors

w_0 = (1/ns)*sum(D(usvindex) - ... % Optimal bias

H(usvindex svindex)*lambda(svindex).*D(usvindex




Simulation

OO0 Linearly non-separable data set, Lagrange multiplier
values after optimization, and type of support/non-
support vector

Data point  Class  Support Vector  A; Type

050.5 -1 No 0 Non-support
051.0 —1 Yes 0.4  Unbounded
1015 | Yes 5.0 Bounded
1.50.5 —1 Yes 5.0 Bounded
1.52.0 —1 Yes 5.0 Bounded
201.0 l Yes 5.0  Bounded
2520 | Yes 0.4  Unbounded

2525 | No 0 Non-support




Simulation

0 Same data set as
in the linearly
separable case,
except for
B classes of data

points 3 and 5
iInterchanged to
make the
problem non-
separable

Number of support
vectors i1s now six

[0 Twoare
unbounded, and
four being bounded




Towards the Non-linear SVM

Next:

B Lay down the method of designing a support
vector machine that has a non-linear
decision boundary.

Ideas about the linear SVM are directly

extendable to the non-linear SVM using

an amazingly simple technique that is
based on the notion of an inner product
kernel.




Feature Space Maps

Basic idea:

B Map the data points using a feature space map into a
very high dimensional feature space H

X — CD(X) — (611¢1(X)a Clg(bg(X), S C'ln(ﬁn(X)» .- )

B Non-separable data become linearly separable
B Work on a linear decision boundary in that space
V(X) = sign(z diri ®(X) - D(X;) + 0)

=1
B Map everything back to the original pattern space




Pictorial Representation of Non-
linear SVM Design Philosophy

Low dimensional X space <€ > High dimensional feature space

Class 1 Class 1

Linear separating
boundary in feature
space maps to non-
linear boundary in X
space

Class 2 Class 2

Kernel function evaluation <€ > Inner product of feature vectors

KCX;, %) H0X) . 9(X,)




Kernel Function

Note: X values of the training data appear in
the Hessian term H; only in the form of dot
products

Search for a "Kernel Function” that satisfies

oo

K(X;, X;,)=®(X;) d(X)) = Zd[z@(Xf)@(Xj)
=1

Allows us to use K(X,, X,) directly in our
equations without knowljedge of the map!




Example: Computing Feature Space
Inner Products via Kernel Functions

Assume X = x, d(x) = (1,x,x2,.. xm)

Choose g, =1,1=1,..m, and the decision surface
is a polynomial in x

The inner product ®(x) - d(y) =
(1,x,x%,. . xM(Lyys. . y™ =1+ xy+(xy)>+ (xy)"
is polynomial of degree m

Computing in high dimensions can become
computationally very expensive...




An Amazing Trick

Careful choice of the coefficients can
change everything

Example: Choosing a = (T)
Yields

O(x)- D(y) = i(mj(xy)‘ = (14 xy)"

ERS

A "kernel” function evaluation equals the
inner product, making computation
simple.




Example

= (X1, X3)'
Input space R?
Feature space R°
:(1,ﬁx1,ﬁx2,x1,xz,fxx
Admits the kernel function
K(X,Y) = O(X)-D(Y) = (1+ XY)?




Non-Linear SVM Discriminant with
Polynomial Kernel Functions

Using kernel functions for inner products the
SVM discriminant becomes

d(X) = sign(z d,;i;K(X, X))+ w 0)

=1

This is a non-linear decision boundary in input
space generated from a linear superposition of
n. kernel function terms

This requires the identification of suitable
kernel functions that can be employed




Mercer's Condition

OO0 There exists a mapping @ and an expansion of a
symmetric kernel function

K(X,Y)=>) ¢i(X)i(Y)
iff
] f K(X,Y)g(X)g(¥Y)dX dY >0

such that

/gz(X) dX < o0




Inner Product Kernels (1)

Polynomial discriminant functions

d(X) = sign(z diri K(X, X))+ W 0)

i=1

admit the kernel function

KX, Y)=(1+X-Y)"




Inner Product Kernels (2)

Radial basis indicator functions of the form

m

_ N2
¥(X) = sign(z o exp[_ | X - || D

i=1

admit the kernel function

_||X—Y||2}

K(X,Y)= exp[ .
o)




Inner Product Kernels (3)

Neural network indicator functions of the form

m

v(X) = sign(z a; tanh[a(X - W) + b] + wo)

=1

admit the kernel function

K(X,Y) =tanh(a(X - Y) + b)




Operational Summary of SVM
Learning Algorithm

Given A training set 7 comprising vectors X; € R”
and desired output vectors d; € {—1, +1}

Initialize 3 Choose a kernel function K (-, -)
% Set up the Hessian matrix: H;; = d;d; K(X;, X ;)
% Set C




Operational Summary of SVM
Learning Algorithm

Maximize G AT1 — %ATHA subject to the constraints:
> A-D=0
Y A >0
= A <Cl1
using any quadratic program optimizer.
Obtain optimized Lagrange multipliers.

Predict Class  Given any test input X, set the class:

I y(X) = sign(Z’;’;l d,-i,-K(X, X))+ w 0)




MATLAB Code Segment for
Hessian Computation

7 All code same as for linear SVM non-separable data
7 Code snippet shown for polynomial kernel

ord = 2; 7% Order of polynomial kernel
H = zeros(q,q); % Initialize Hessian matrix

fori=1:qg % Set up the Hessian
for j= 1.q
H(i.j) = DYDY (XY X(j.2) + 1)” ord:
end
end




SVM Computations Portrayed as a
Feedforward Neural Network!

T B T

Applied Support Kernel Weights as products
Test vector Vector function Of Lagrange multipliers
layer and desired values

Vv




XOR Simulation

O XOR Classification, C = 3, Polynomial kernel (X;7X; +1)?

oS
DO ST, 75
e
5 et ele ey,

Y ¢’0‘0‘¢"¢ K
SO
“ ‘:“‘:‘::‘:”‘ “ ‘

{7
-2 ' — 1 ¥OXREO :':::0':";"#'
-2-15-1-05 0 05 1 15 2 -9 9
Margins and class separating boundary using a Intersection of the signum indicator

second order polynomial kernel function and non-linear polynomial surface




XOR Simulation

OO0 Data specification for the XOR classification problem
with Lagrange multiplier values after optimization

Data point  Class  Support Vector Ai Type

00 —1 Yes 3.0 Bounded
01 | Yes 242  Unbounded
10 1 Yes 242  Unbounded

11 —1 Yes 1.85  Unbounded




Non-linearly Separable Data
Scatter Simulation

0 C = 10: Stress on large margin sacrifice classification

accuracy
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Non-linearly Separable Data
Scatter Simulation

O C=10
Data point  Class  Support Vector Aj Type
C =10

0.50.5 —1 No 0.0 Non-support
0.51.0 —1 Yes 1.1 Unbounded
1.01.5 1 Yes 10.0 Bounded
1.505 —1 Yes 6.49 Unbounded
1.52.0 —1 Yes 7.76 Unbounded
2.0 1.0 | Yes 4.57 Unbounded
2520 | Yes 0.0 Non-support
2.52.5 | No 0.79 Unbounded




Non-linearly Separable Data
Scatter Simulation

O C= 150: Small margin, high classification accuracy

A 6. 4
4.
\
A 2. \“\\“
\
0. \“ ‘ﬂ
ﬁ _2F I ul
1 — 4\ : ;!‘{i“!" “!!“\
5 _B | = \\\\\““\\\\
Yt
2. A s
5y 'r\\“‘\\\“\\\“‘\\\\‘\‘“\\\\\“““ \\\\“
0 i
S 00




Non-linearly Separable Data
Scatter Simulation

O C=150
Data point  Class  Support Vector A Type
C =150

0.50.5 -1 No 0.0 Non-support
0.51.0 —1 Yes 56.4 Unbounded
1.01.5 1 Yes 150.0  Bounded
1.50.5 —1 Yes 11.32  Unbounded
1.52.0 —1 Yes 100.89  Unbounded
201.0 | No 0.0 Non-support
2520 1 No 0.0 Non-support
2525 | Yes 18.64  Unbounded




Support Vector Machines for
Regression

The outputs can take on real values, and thus
the training data now take on the form T = {X,
dk} Xk S ER”, dk e R

Find the functional that models the
dependence of d on X in a probabilistic sense

Support vector machines for regression
approximate functions of the form

m

f(X, W) = Z widi(X) + wo = W (X) + wy

High dimensional feature vector




Measure of the Approximation Error

Vapnik introduced a more general error
function called the ¢-insensitive loss
function

if |d — F(X,W)| <e

Ld, f(X,W)) = ld — F(X,W)| —e otherwise

No loss if error range within t¢

Loss equal to linear error - ¢ if error
greater than t¢




c-Insensitive Loss Function

Loss associated
with data point P

Y




Minimization Problem

Assume the empirical risk

1 0
RLST =5 D Lelde f(Xis W)
k=1

subject to

[W]? < A

Introduce two sets of slack variables &,
& for each of Q input patterns




Cost Functional

Define d—WidX)—wy—e<& i=1,...,0
W oX)+wy—di —e<& i=1,...,0

E>0 i=1,...,0

E>0 i=1,...,0

The empirical risk minimization problem is then
equivalent to minimizing the functional

1 Q Q
—|WI? =+ C : :’
SIWI* + (X;é +;é,)




Primal Variable Lagrangian

Slack variables = = (&;,.., £5)T 2 = (&, Eq)T

Lagrange multipliers I' = (y,.. yo)T A = (Ay,.. 1)’
[ = (e YT A = (g 2Q)T

1 =
Lp(W.wo, E. B A, A T.T) = sWIW +C ) &+ £
i=1
Q
— ZM(WTCD(X:') +wo —d; +€+5§;)
i=1

0, 0
=Y M(di =W (X)) — wo + e +E) = > (riEi+V/E)

=1 i=1




Saddle Point Behaviour

0
=0 = W=>) (h — A)P(X))
=1

ILp(W,wy, B, B, A, A", T, T))
oW

ILp(W,wy, E,E, A, A, T, T)

8w0

0
i=1
ILp(W,wo, E, 8, A, A',T, T)
d&;
I(Lp(W,wy, E, E', A, A',T,T))
&/

=0 = ¥ =C—,




Simplified Dual Form

Substitution results in the dual form

Q
Lp(A, A') = (Z Aildi —€) — Ai(d; + 6))
=1
1 0 0
—5 L L()\.,)\.J — }\.,)\.; — A.:)\.J -+ )\.:A;)K(X,, XJ)

i=1 j=I




Dual Lagrangian in Vector Form

Maximize
N T /T D —61 1 T T H —H A
subject to the constraints = KO X)
Q 1=(. 1)




Optimal Weight Vector

For n_ support vectors

Q
W = Z(if — A)D(X;)
i=1

=) (e — A)P(Xy)
k=1




Computing the Optimal Bias

Invoke Kuhn-Tucker complementarity

wo =d; — W' ®(X;) — € sign(;)

Substitution of the optimal weight vector
yields

1 ng, N
o = — Z(df — ) BT (X)P(X;) — € sign(ﬁ,:))
. k=1

=1

}/LLSH i:(d; — ; ﬁka,; — € mgn(ﬁ,))

=1




Simulation

Regression
oh hoisy
hyperbolic
tangent data
scatter

Third order
polynomial
kernel

¢=0.05, C=10

04}

Y L

-0.8 . . l . .
-0.5 = -0.5 0 0.5 1 1.5




Simulation

Regression
onh hoisy
hyperbolic
tangent data
scatter

Eight order
polynomial
kernel

£=0.00005,
C=10

-0.2¢

—04}

-06 |
G.

-0.8

-0.5

1.5




Simulation: Zoom Plot

Eight order ...["

polynomial ~0.4f
kernel oal
£=0.00005, _; .0

C=10 ~0.4001}

Shows the o400}
fine mar'gin, ~0.4002}
and the ~0.4003
support 0.4003}

VeC'I'o r —0.9003-0.9002-0.9001 -0.9 -0.8999-0.8998- 0.8997




Radial Basis
Function Networks

Neural Networks: A Classroom Approach

Satish Kumar

Department of Physics & Computer Science
Dayalbagh Educational Institute (Deemed University)

Copyright © 2004
Tata McGraw Hill Publishing Co.



Radial Basis Function Networks

Feedforward neural networks

B compute activations at the hidden neurons
using an exponential of a [Euclidean]
distance measure between the input vector
and a prototype vector that characterizes
the signal function at a hidden neuron.

Originally introduced into the literature
for the purpose of interpolation of data
points on a finite training set




Interpolation Problem

Given T = {X,, d,} X, € ®", d, € R

Solving the interpolation problem means finding
the map f(X,) =d,, k=1,.,Q (target points are
scalars for simplicity of exposition)

RBFN assumes a set of exactly Q non-linear
basis functions ¢(||X - X.||)

Map is generated using a superposition of these

0
FXO) =) wiedlX — X;|)
=1




Exact Interpolation Equation

0 Interpolation conditions ¢
Y widlXi —Xilh=d k=1,....0

=1

[0 Matrix definitions D=(d,....dy)T
W:(wl,... ,UJQ)T
(¢(X1 = X1l) --- oI Xy —XQ”))

¢ = g :
(1 Xo = Xil)) - &([[ X0 — Xoll)

O VYields a compact matrix
equation D=®"W=0oW




Michelli Functions

Gaussian functions

P(x) = eXp(—

(x —¢)?
2072

), o>0:x,ceR

Multiquadrics

d(x)=x*+AHY, ¢c>0x,ceR

Inverse multiquadrics

|
d(x) = v ¢c>0,x,ceR




Solving the Interpolation Problem

Choosing © correctly ensures invertibility: W =
o1 D
Solution is a set of weights such that the

interpolating surface generated passes through
exactly every data point

Common form of @ is the localized Gaussian
basis function with center p and spread o

X — ull?
¢(X):exp(_ll ull)

2072




Radial Basis Function Network




Interpolation Example

Assume a hoisy data scatter of Q = 10
data points

Generator: 2 sin(x) + x

In the graphs that follow:

B data scatter (indicated by small triangles) is
shown along the generating function (the
fine line)

B interpolation shown by the thick line




Interpolant: Smoothness-Accuracy

O o=1 O o=0.3




Derivative Square Function

O o=1 O o=0.3




Notes

O Making the spread factor smaller
B makes the function increasingly non-smooth

B being able to achieve a 100 per cent mapping accuracy on
the ten data points

O Quantify the oscillatory behaviour of the interpolants by
considering their derivatives

B Taking the derivative of the function
B Square it (fo make it positive everywhere)
B Measure the areas under the curves

[0 Provides a nice measure of the non-smoothness—the
greater the area, the more non-smooth the function!




Problems...

Oscillatory behaviour is highly undesirable for
proper generalization

Better generalization is achievable with
smoother functions which are fitted to noisy
data

Number of basis functions in the expansion is
equal to the number of data points!

B Not possible to have for real world data sets can be
extremely large

B Computational and storage requirements for can
explode very quickly




The RBFN Solution

Choose the number of basis functions to be
some humber g < Q

No longer restrict the centers of the basis
functions to be fixed to the data point values.
B Now made trainable parameters of the model
Spreads of each of the basis functions is
permitted to be different and trainable.

B |earning can be done either by supervised or
unsupervised techniques

A bias is included in the final linear
superposition




Interpolation with Fewer than Q
Basis Functions

Assume centers and spreads of the basis
functions are optimized and fixed

Proceed to determine the hidden-output
neuron weights using the procedure
adopted in the interpolation case




Solving the Problem in a Least
Squares Sense

To formalize this, consider interpolating a set
of data points wi’rh a humber q < Q

Th
= f(X)—wab(llX Xl

Introduce the no’rlon of error since the
interpolation is not exact

Q

2
& = ;Z(dk quﬁ(llxk—xu))

k=1




Compute the Optimal Weights

Differentiating w.r.t. w; and setting it
equal to zero

Q q Q
Z(bkf(z wlqb/cz) = deqbk;, i=1,...,q
k=1 I=1 k=1

]‘hen d11 -+ D1y
. . a1 - Pag
(¢" @)W ="' D o =1 . .

do1 - Poq




Pseudo-Inverse

This yields

W= (o"®)" d"D

—o'p

Equation solved using
singular value decomposition

where

oll= (o7 o) @7

Pseudo-inverse
(is not square: g x Q)




Two Observations

Straightforward to include a bias term
w, into the approximation equation

FO =) wip(lX —XiD+wo. <0
=1

Basis function is generally chosen to be
the Gaussian

oI X — Xill) = GXP(

X —X,-||2)

201.2




Generalizing Further

RBFs can be generalized to include arbitrary
covariance matrices K

1 |
o(|X — X;|) = GXP(—E(X — X)'K (X — Xi))

Universal approximator

RBFNs have the best approximation property

B The set of approximating functions that RBFNs are
capable of generating, there is one function that has
the minimum approximation error for any given
function which has to be approximated




Simulation Example

Consider approximating the ten noisy data
points with fewer than ten basis functions
f(x) = 2 sin(x) + x

Five basis functions chosen for approximation
B half the number of data points.

Selected to be centered at data points 1, 3, 5,

7 and 9 (data points humbered from 1 through
10 from left to right on the graph [next slide])




Simulation Example

G:O.5 c =1




Simulation Example

c=Db5 c =10




MATLAB Code for RBFN

Q = 10; % 10 data points

noise = 0.6; % additive noise

x= linspace(-2*pi,2*pi, Q): % X samples
scatter = (2*rand(1,Q) - 1)*noise;

d = (2*sin(x) + x + scatter); % Y data
testpts = 100; 7% Number of fest data
testx= linspace(-2*pi, 2*pi, testpts);
testy = (2*sin(testx) + testx)’;

sigma = .5;

fori=1Q
k=1;
for j = 1.:Q/2
hi(i x(i
g ((&3) ~2/ Z*glg(ra\a “2));
k=k+2;
end

end

% Compute pseudo inverse

pseudoinv = inv(phi' * phi) * phi’

W = pseudoinv * d: 7% Compute weights
% Generate phi matrixfor test data

for i = litestpts
k=1
for j = 1:Q/2

o) G e
k=k+2;

end
end

% Generate approximant
f = testphi* W;




RBFN Classifier to Solve the XOR
Problem

Will serve to show Point#k x x d
how a bias term is X 0 0 0
included at the X, 0 1 ]
output linear neuron T R

X4 1 | 0

RBFN classifier is
assumed to have two 1X — X, ||?
basis functions SllX = Xill) = eXp(_ 202 )

centered at data 1X — X4
points Land 4 41X — Xal) = exp( -~ )
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RBFN Architecture

| I1X — X, ||? | 1X — X4l
f(X)=wy+ wyexp| — > + wy exp| — >

Basis functions centered
at data points 1 and 4




Finding the Solution

Pseudo inverse

—0.1810 0.6810
o = 1.1781 —0.6688
0.1594 —0.6688

We have the D, W, ©
vectors and matrices
as shown alongside

b =

D =
W =

0.6810
—0.6688
—0.6688

(1.0000
1.0000
1.0000
\ 1.0000

(0110)"

(UJQ (193] U)z)

T

1.0000
0.1353
0.1353
0.0183

0.0183)
0.1353
0.1353
1.0000 /

Weight vector

—0.1810
0.1594
1.1781

W =

1.3620
—1.3375
—1.3375
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Ill Posed, Well Posed Problems

L

=

O O

Ill-posed problems originally identified by Hadamard in
the context of partial differential equations.

Problems are if their solutions satisfy three
conditions:

B they exist

B they are unique

B they depend continuously on the data set
Problems that are not well posed are
Example

B differentiation is an ill-posed problem because some
solutions need not depend continuously on the data

B inverse kinematics problem which maps external real
world movements info an internal coordinate system




Approximation Problem is Ill Posed

OO0 OO0

O O

The solution to the problem is not unique

Sufficient data is not available to reconstruct the mapping
uniquely

Data points are generally noisy
The solution to the ill-posed approximation problem lies in

B essentially requires the introduction of certain constraints
that impose a restriction on the solution space

Necessarily problem dependent

Regularization techniques impose constraints
on the approximating set of functions.

Some degree of smoothness is necessary for the
representative function since it has to be robust against
hoise.




Regularization Risk Functional

Assume training data T generated by
random sampling of the function

Regularization techniques replace the
standard error minimization problem
with minimization of a reqularization risk
functional




Tikhonov Functional

two terms

Q
RAf1= (di — f(X)) + 1]
=1

Regularization risk functional comprises

/1

N

error function

N

smoothnes

s functional

A4

intuitively appealing to consider using
function derivatives to characterize smoothness




Regularization Parameter

The smoothness functional is expressed as

CLf1=IIPfI°

B Pisalinear differential operator, ||:|| is a norm
defined on the function space (Hilbert space)

The regularization risk functional to be
minimized is

regularization parameter

O
R.[f1=) (di — (X))’ + AIPSfI?
=1

smoothness

v

closeness to data




Euler-Lagrange Equations

We need to calculate the functional derivative
of R. called the Frechet differential, and set it
equal to zero

d
dR.[f, gl = ER;»[JC + ygl

y=0
A series of algebraic steps (see text) yields

the Euler-Lagrange equations for the Tikhonov
functional

. 1 /2
PPf = X(Z(di — f(Xi)§(X — Xi))
=1




Solving the Euler-Lagrange System

Requires the use of the Green's function for
the linear differential operator

Q=PP
Green's function for a linear differential
operator Q satisfies prescribed boundary
conditions and has continuous partial

derivatives with respect to X everywhere
except at X = X. where there is a singularity.

Satisfies the differential equation QG(X,Y) = O




Solving the Euler-Lagrange System

See algebra in the text
Yields the final solu’rion

f(X) = Z(d F(X)NG(X. X))

— Z w,G(X, X;) w; = +(di — f(X)))

Linear weighted sum of Q Greens functions
centered at the data points X




Quick Summary

The regularization solution uses Q
Green's functions in a weighted
summation

The nature of the chosen Green's
function depends on the kind of
differential operator P chosen for the
regularization term of R.




Solving for Weights

Starting point A 2
IP 70 =3 wG(X. X)
=1

Evaluate the
equation at each
data point

Q
fX) =) wiGXe. X)) k=1.....0
=1

|
wf:x(df_f(Xi)) k=1,...,0




Solving for Weights

Introduce matrix notation

F=(f(X1),..., f(Xo)
W = (w, ... ,UJQ)T
D=(d,....dp)

(G(X1. X1) -+ G(X1, Xo) |
G(X2, X1) -+ G(X2, Xp)

\G(XQ;, O ERE G(Xé, X))




Solving for Weights

With these matrix definitions

1 .
F =GW
and
(G + AW = D
Finally (1)

W=(G+)'D




Euclidean Norm Dependence

If the differential operator P is
B rotationally invariant
B translationally invariant

Then the Green's function G(X,Y) depends only
on the Euclidean norm of the difference of the
vectors

GX,Y)=G(IX =YI)

Then

Q
FO =Y wG(X — X))
=1




Multivariate Gaussian is a Green's
Function

[0 Gaussian function O The final minimizer is

defined by then
|X - Y|?

G(X.Y) _exp( 20’; ) f(X)Z Zw,' exp(_ ||X2 zfz | )
i=1 y

:

0 is a Green's function
defined by the self-
adjoint differential
operator

PP = 1 i v2’ V= A il
Q= Z( - A

n




MATLAB Code Segment for
RBFN Regularized Interpolation

7% Code segment for Regularized Interpolation

lambda = 0.5;

fori=1.Q

for j = 1:Q

phi(i,j) = exp(-(x(i)-x(}))"2/(2*sigma"2));
end

end

Wreg = inv(phi + (lambda * eye(Q))) * d’;

for k = 1:itestpts

fori=1:Q

phitest(k,i) = exp(-(testx(k)-x(i))"2/(2*sigma”2));
end

f(k) = phitest(k,:)*W_reg;

end




Comparing Regularized and Non-
regularized Interpolations

No regularizing term Regularizing term . =

r=0 0.5




Comparing Regularized and Non-
regularized Interpolations

No regularizing term Regularizing term . =
A=0 0.5




Generalized Radial Basis Function
Network

We now proceed to generalize the RBFN
in two steps

B Reduce the Number of Basis Functions,
Use Non-Data Centers

B Use a Weighted Norm




Reduce the Number of Basis
Functions, Use Non-Data Centers

The approximating function is,

fa(X) =Y " wiG(IX — will)
=1

Interested in minimizing the regualrized
risk

q 2
Ri[fu] = Z(dk ~ Y wiG(IX - ||)) P fl
=1




Simplifying the First Term

Using the (GUIX1—mal) -+ GUIX1 — g )
matrix - G(I1X2 — wall) - G X2 — 1yl
substitutions B z ;
\G(I1Xo — 1) G(IXgo — 14l
D=(d.....d)"

yields W= (w.....w,)"

Q q 2

Z(dk — > wiG(I Xy — u,-n)) = ||ID - GW|?

k=1 =1

= (D —GW)! (D — GW)




Simplifying the Second Term

Use the properties of the adjoint of the
differential operator and Green's function

IPf.? =wWIGW

where
(G(lir — ) - Glllr — 1)
. G(|lpe2 = i) - - G2 — gl
G: . T, .
\G(llitg — pill) - Gl — nqll))
Finally

R[f.]1=(D—-GW) (D—-GW)+ W GW




Using a Weighted Norm

0 Replace the standard Euclidean norm by

IX — s = (X — )" S"S(X — )

[0 S is ahorm-weighting matrix of dimension nxn
0 Substituting into the Gaussian yields

G(IX — iills) = exp(—(X — )" STS(X — u))
1 Ty-—1
= eXp(—E(X — ) K (X — u))

B where K is the covariance matrix
O With K = 62T is a restricted form




Generalized Radial Basis Function
Network

Some properties
B Fewer than Q basis functions

B A weighted nhorm to compute distances,
which manifests itself as a general
covariance matrix

B A bias weight at the output neuron

B Tunable weights, centers, and covariance
matrices




Learning in RBFNs

Random Subset Selection

B Out of Q data points, g of them are
selected at random

B Centers of the Gaussian basis functions are
set to those data points.

Semi-random selection

B A basis function is placed at every rh data
point




Random, Semi-random Selection

Spreads are a function of the maximum
distance between chosen centers and g

¢ = max (”)U'I — [L,”)

1<i,j<q

Gaussians are then defined
1X — i)
G(|X — i) = eXp(— o2 )
such that

o =a/JV2q




Operational Summary of Radial Basis
Function Network

OO0 Design assuming random placement of centers and fixed spreads

Given A training set 7 comprising vectors X; € R”
and desired output vectors d; € R

Initialize % Choose the number of basis functions ¢
9~ Set the regularization parameter A

Design RBFN 9 Set the values of the centers {/4;};_,
to random data points using a uniform distribution
3 Compute maximum distance between chosen centers «
% Set the spreads 0 = «//2q
3 Compute G, G
% Compute pseudo-inverse (G’ G + AG)'GT using SVD
9 Find the optimal set of weights W
W=G'D




Hybrid Learning Procedure

Determine the centers of the basis
functions using a clustering algorithm
such as the k-means clustering algorithm
Tune the hidden to output weights using
the LMS procedure




k-Means Clustering

Given A training set 7 comprising vectors X; € R”
and desired output vectors d; € R

[nitialize 3= Choose the number of clusters ¢
% Randomize the values of the centers {1!}7_,
4 Set the learning rate 0 < n < |

[terate O O Repeat

{

% Pick a data point X
93— Find the index J of the closest center:
J = argminlgigq | X% — Nf\”
3~ Update only the closest center:
it = (X — )
Huntil there is no perceptible change in the centers.)




Supervised Learning of Centers

All the parameters being free and subject to a
standard supervised learning procedure such as
gradient descent

Define an error function
9)

0
£ = ;Z(dk ZwG(nXk—ufng)) =>4
k=1

k=1

Free parameters: centers, spreads (covariance
matrices), weights




Partial Derivatives

0 k
ok ZejG(||Xj — wills)

Jw;

0Cx
" —2w"Ze G'(I1X; — K (X, — b

Q
dE ,
T Z AG(IX; — ph )X, — X, — )]




Update Equations

0C
wfﬂ—wk—m—k, i=1,....,q9
Jw;

JC
u“l_uf—nz—k, i=1,....,q
O

1kt _ 0
K. l|"“Ll:K!.“k—m - =1, ...

8K-_l|k ’




Image Classification Application

High dimensional feature space leads to poor
generalization performance of image
classification algorithms

Indexing and retrieval of image collections in
the World Wide Web is a major challenge

Support vector machines provide much promise
in such applications.

We now describe the application of support
vector machines to the problem of image
classification




Extending SVMs to the Multi-class
Case

"One against the others”
C hyperplanes for C classes

y;j(X) = sign (Z rdiK(X, X;)+ b)

=1

Class C; is assigned to point X if

J = argmax y,(X)
J




Description of Image Data Set

L
O

Corel Stock Photo collection: 200 classes each with 100
images
Two databases derived from the original collection as
follows:
B Corelld

0 14 classes and 1400 images (100 images per category)
B Classes were from the original Corel classification:

O air shows, bears, elephants, tigers, Arabian horses, polar
bears, African specialty animals, cheetahs-leopards-jaguars,
bald eagles, mountains, fields, deserts, sunrises-sunsefs,
night scenes

B This database has many outliers, deliberately retained
Corel7
B Newly designed categories
B 7 classes and 2670 images
O airplanes, birds, boats, buildings, fish, people, vehicles




Corell4

(©1999 IEEE). Reprinted with permission.



(©1999 IEEE). Reprinted with permission.



Colour Histogram

Colour is represented by a point in a

three dimensional colour space:

B Hue-saturation-luminance value (HSV)

B Ts in direct correspondence with the RGB
space.

Sixteen bins per colour component are

selected yielding a dimension of 4096




Selection of Kernel

Polynomial
Ky(X.Y)=(X-Y +1)

Gaussian

K (X -Y)=exp(—p|X — Y|

General kernels
K(ZRBF(Xa Y) — exp(—,o d(X, Y))

(x; — yi)
d,o(X,Y) = Z T,

dr,(X,Y) =) |xi — il




Gaussian Radial Basis Function
Classifiers and SVMs

Support vector machine is indeed a radial basis
function network where
B the centers correspond to the support vectors

B the number of centers is the number of support
vectors

B the weights and bias are all chosen automatically
using the SVM learning procedure

This procedure gives excellent results when

compared with Gaussian radial basis function

networks ftrained with non-SVM methods.




Experiment 1

For the preliminary experiment, 1400 Core/14
samples were divided into 924 training and 476
test samples

For Core/7 the 2670 samples were divided into
1375 training and test samples each

Error Rates

Database  Linear Poly2  Gaussian RBF x> RBF  Laplacian RBF

Corel14 36.3 35.3 30.5 14.7 14.5

Corel7 42.7 38.9 32.2 21.6 20.5

(©1999 IEEE). Reprinted with permission.



Experiment 2

Introducing Non-Gaussian Kernels

K(X,Y)=exp(—p d,»(X,Y))

dap(X.Y) =) |xf =y’

In addition to a linear SVM, the authors
employed three kernels: Gaussian,
Laplacian, sub-linear




Corell4

Kernel Linear  Gaussian RBF  Laplacian RBF  Sublinear RBF
b=2 b =1 b =0.5
Ngy 2023 2307 3339 3352
a=1 36.4 32.7 17.4 13.7
a=0.5 22.2 17.1 12.7 12.6
a = 0.25 15.2 13.0 11.0 12.4
a =0.125 14.3 12.0 11.5 12.5
a=0.0 18.4 16.5 16.5 16.5

(©1999 IEEE). Reprinted with permission.



Corel7

Kernel Linear  Gaussian RBF  Laplacian RBF  Sublinear RBF
b=2 b=1 b =0.5
Nsy 3567 4137 5127 5418
a=1 42.5 40.4 22.8 19.2
a=0.5 28.4 21.2 17.4 18.5
a =0.25 23.6 17.6 16.3 18.8
a=0.125 26.9 28.6 19.0 19.3
a=20.0 33.2 242 242 24.2

(©1999 IEEE). Reprinted with permission.



Weight Regularization

Regularization is a technique that builds a
penalty function into the error function itself
B increases the error on poorly generalizing networks

Feedforward neural networks with large
number and magnitude of weights generate
over-fitted network mappings that have high
curvature in pattern space

Weight regularization: Reduce the curvature
by penalizing networks that have large weight
values




Introducing a Regularizer

[0 Basic idea: add a "sum of € =¢84 aQ
weight squares” term :
over all weights in the _ e (_ _2)
network presently being “\2 Z v
optimized “

O o is aweight =CtsWW

regularization parameter

[0 A weight decay
regularizer needs to
treat both input-hidden
and hidden-output
weights differently in _ou > % 2
order to work well =5 2.2 Wit 2 ; Z,: W

[ h




MATLAB Simulation

Two-class
data for 4
weight 3
regularization | o
example . >80 0 o9
x il o 5 2098
ol ) %08 O%)OO
1t :




MATLAB Simulation o
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Committees of Networks

A set of different neural network
architectures that work together to generate
an estimate of the underlying function f(X)

Each network is assumed to have been trained
on the same data distribution although not
necessarily the same data set

An averaging out of noise components reduces
the overall noise in prediction

Performance can actually improve at a minimal
computational cost when using a committee of
networks




Architecture of Committee Network




Averaging Reduces the Error

Analysis shows

1
that the error Ce = ﬁE[Z i + Z ZE"E"}

can only reduce ' i
oh averaging | (
S p— E[e,-z] + Ele;e -])
Assume N? Z ZZ :
J#l

_ , ,

| N 1 i=1

— Y E[e}(X)] _

. ; F(X)] — &




Mixtures of Experts

=

O O

O O

Learning a map is decomposed into the problem of
learning mappings over different regions of the
pattern space

Different networks are trained over those regions

Outputs of these individual networks can then be
employed to generate an output for the entire pattern
space by appropriately selecting the correct networks'’
output

Latter task can be done by a separate gating network

The entire collection of individual networks together
with the gating network is called the mixture of
experts model




