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Dynamical Systems Dynamical Systems 
ReviewReview



Global Global BehaviourBehaviour of Systemsof Systems
Global behaviour of systems is a 
manifestation of local interactions 
between components
Generally characterized by a set of 
variables called states
Example: inductor current and capacitor 
voltage in an electrical circuit



States, State VectorsStates, State Vectors
State variables of the system 
characterize its behaviour
A vector of states is called a state 
vector, X ∈ ℜn

Example: the vector of neuronal 
activations is a state vector of the neuron 
layer 



FeedforwardFeedforward SystemsSystems
Inputs set up internal states and 
generates an output which remains 
unchanged as long as the input is held 
constant

Combinational logic circuit 
Feedforward neural network



Feedback SystemFeedback System
Output fed back as an additional input to 
the system after delay modifies the overall 
input to the system
Changes the internal “state” of the system 
which in turn generates a new set of outputs
States of the system evolve in time

Time dynamical system



Discrete Time Logistic FunctionDiscrete Time Logistic Function
f(x) = a x (1 – x), a ∈ [0, 4] , x ∈ (0, 1)

Difference form: xk+1 = a xk (1 – xk)



Discrete Time Logistic FunctionDiscrete Time Logistic Function
The logistic function undergoes bifurcations from fixed 
point behaviour, through limit cycles towards chaos as 
the gain is changed from 0 towards 4



State EquationsState Equations
An n-dimensional system is governed by the 
equation

Autonomous system: vector field not a function 
of time
Non-autonomous system: vector field is a 
function of time

Vector field



Trajectories and OrbitsTrajectories and Orbits
Time is continuous

t ∈ ℜ
Continuous time dynamical 
system
Trajectory

Time is discrete
t ∈ Z+

Discrete time dynamical 
system
Orbit

Collection of trajectories is 
called a phase portrait



Existence and Uniqueness TheoremExistence and Uniqueness Theorem

Consider the initial value problem 

Suppose that f(.) is continuous, and that 
all its partial derivatives ∂fi/∂xj, i,j = 
1,…,n, are continuous on some open 
connected set D ⊂ ℜn. Then for X0∈D, 
the initial value problem has some 
solution X(t) on some interval (-τ, τ)
about t = 0, and the solution is unique.

0XX(0)  f(X),X ==&



AttractorsAttractors
Attractors: regions of state space to 
which neighbouring trajectories 
converge 
Take on different shapes and sizes 
depending on the system under 
consideration
Examples:

Fixed points
Limit cycles



DefinitionDefinition
Attractor, A

A closed set satisfying the following 
properties

Invariant set – trajectories starting within A
remain in A
A attracts an open set of initial conditions 
called the basin of attraction
No proper subset of A satisfies the above 
properties



Attractors and Attractors and RepellersRepellers

Trajectories generally settle down 
to some part of the state space

Trajectories do not settle down and 
eventually shoot off to infinity



StabilityStability
Uniform stability

Positive ε, δ
Convergent

Positive δ
Asymptotically stable

Uniformly stable and convergent



Uniform and Convergent StabilityUniform and Convergent Stability

X̂

X(0)
δ

X̂

X(0)
δ

ε

Uniform stability Convergent stability



Asymptotic StabilityAsymptotic Stability
An equilibrium state X is asymptotically 
stable in the large or globally 
asymptotically stable if it is stable and 
all trajectories converge to X as t → ∞



Autonomous Linear SystemsAutonomous Linear Systems
Commonly characterized by differential 
equations of the following form

More conveniently as



Vector Differential EquationVector Differential Equation
AXX =&

Interpret A as a linear map
A: ℜn → ℜn

An equilibrium state of the system is the 
point in space where the vector field 
vanishes
For the autonomous case, the origin is a 
fixed point



Matrix Matrix DiagonalizationDiagonalization
Assume matrix A is non-singular
A has n distinct eigenvalues
Orthogonal similarity transformation

transforms to  
D = P-1AP, P is a matrix with eigenvectors as 
columns

AXX =& DYY =&



EigensolutionEigensolution of Linear Systemsof Linear Systems
Solution of
In terms of eigenvectors and eigenvalues

AXX =&



Two Dimensional Linear SystemTwo Dimensional Linear System
Helps develop and 
intuitive 
understanding

Eigenvalues
Whether they are 
real or complex 
depends on ξ - 4∆2

trace of A determinant of A



Two Dimensional Linear System: Two Dimensional Linear System: 
BehaviouralBehavioural PatternsPatterns

With real eigenvalues ξ - 4∆2 > 0 and the 
solution is either a

stable node  λ1 < 0,  λ2 < 0
unstable node λ1 > 0,  λ2 > 0
saddle point λ1 < 0,  λ2 > 0

With complex eigenvalues ξ - 4∆2 < 0 and the 
eigenvalues take the form α ± jβ. The solution 
then takes the form

stable focus α < 0
unstable focus α > 0
limit cycle or center α = 0



Two Dimensional Linear System: Two Dimensional Linear System: 
BehaviouralBehavioural PatternsPatterns



Two Dimensional Linear System: Two Dimensional Linear System: 
BehaviouralBehavioural PatternsPatterns



Summary of the Summary of the BehaviourBehaviour of Linear of Linear 
SystemsSystems

Linear system: exactly one of the above six 
kinds of behaviour in the entire state space. 
Need not hold for non-linear systems



NonNon--linear Dynamical Systemslinear Dynamical Systems
Autonomous non-linear systems can be 
described by the vector differential 
system

Vector field f is non-linear



NonNon--linear Systems: Difference linear Systems: Difference 
from Linear Systemsfrom Linear Systems

Presence of multiple attractors
Structure of attractors is often a 
sensitive function of system parameters

Change in the structure of attractors when 
a specific system parameter changes is 
called a bifurcation
Example: Attracting fixed points can 
suddenly become repellers!



Attractors of NonAttractors of Non--linear Systems linear Systems 
can be of Multiple Kindscan be of Multiple Kinds



Linearization of NonLinearization of Non--Linear SystemsLinear Systems

Use the 2-dimensional case as an 
example



Linearization of NonLinearization of Non--Linear SystemsLinear Systems

Use a Taylor series expansion

where



Linearization of NonLinearization of Non--Linear SystemsLinear Systems

Re-write in the following form noting 
that

Define  



Linearization of NonLinearization of Non--Linear SystemsLinear Systems

Finally yields,

or

Jacobian Matrix



HartmanHartman––GrobmanGrobman TheoremTheorem
Let f1(x1,x2) and f2(x1,x2) have continuous first 

order partial derivatives in a neighbourhood of 
the equilibrium state XE. Then if the origin of 
the linearized state equation is a stable 
(unstable) node, a stable (unstable) focus, or a 
saddle point, then the trajectories in a small 
neighbourhood of XE of the corresponding non-
linear state equation will also behave “as” a 
stable (unstable) node, stable (unstable) focus, 
or a saddle point respectively. 



Analysis of a NonAnalysis of a Non--linear Differential linear Differential 
System Through LinearizationSystem Through Linearization

Example:
Equilibrium point is the 
origin

Jacobian matrix

ξ = 0, ∆ = 1 > 0
Linearization predicts 
origin is a limit cycle
(center)
Prediction is incorrect



Transformation of Variables Yields a Transformation of Variables Yields a 
Different Solution!Different Solution!

Polar version of the 
system is

All trajectories 
rotate about the 
origin at a constant 
angular velocity

a = 0: center
a < 0: stable focus
a > 0: unstable 
focus



LyapunovLyapunov StabilityStability
Allows investigation of the stability 
problem 
Makes use of a continuous scalar 
function of the state vector, called a 
Lyapunov function
Straightforward to determine the 
stability by analyzing the behaviour of 
this auxiliary function
Lyapunov’s Theorem



LyapunovLyapunov Stability TheoremStability Theorem
Consider a non-linear system
f: W → ℜn is a C1 map on an open set W ⊂ ℜn.
Let      be an equilibrium point of the system.
Further, let E(X): U → ℜ be a continuous scalar 
function defined on a neighbourhood U ⊂ W of
differentiable on U\{   }
Then     is stable if

is asymptotically stable if

f(X)X =&

XX if 0  )XE( and 0,  )XE( ˆˆˆ ≠>=
X̂

}X{\U in 0,  (X)E ˆ≤&

}X{\U in 0,  (X)E ˆ<&

X̂

X̂

X̂

X̂



Example of Example of LyapunovLyapunov ApproachApproach
Return to our earlier 
non-linear system 
example with a = -1
Define a p.d. scalar 
function 

E(X) = x1
2 + x2

2

Then,

⇒ Global asymptotic stability



Visualization of the Visualization of the Lyapunov’sLyapunov’s
TechniqueTechnique

Consider the 
system

Positive definite 
scalar function 

E(X) = x1
2 + x2

2

Constant energy 
contours are 
concentric circles
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Gradient SystemsGradient Systems
Sometimes neural 
network models are 
gradient systems
They satisfy the 
condition,

Stability guaranteed
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Quadratic FormsQuadratic Forms
Common practice to 
consider quadratic 
Lyapunov functions

E(X) = XTAX
These are positive 
definite



Importance for Neural NetworksImportance for Neural Networks
Proving the stability of neurodynamical systems
Sufficient to find a function of network states 
that is 

bounded below
whose time derivative is negative

Function value decreases with time, and must 
eventually hit a lower bound
Network states cease to evolve any further 
since the Lyapunov energy can decrease no 
further.
Stopping point is to be interpreted as a 
memory that needs to be recalled



Neurons and Update StrategiesNeurons and Update Strategies
Common neuron signal functions

binary threshold signal function
linear threshold signal function
sigmoidal signal function.

Neuron update strategies are
asynchronous update

where neurons update one by one in a purely random order
periodic update

where neurons update one by one in a fixed order in a 
periodic fashion

parallel or synchronous update
where neurons update together.



LyapunovLyapunov Energy Energy FunctionalsFunctionals for for 
Neural NetworksNeural Networks

binary threshold logic neurons operating under 
asynchronous update

binary threshold logic neurons operating under parallel 
update

sigmoids or linear neurons operating  under 
asynchronous or periodic update



LyapunovLyapunov Energy Energy FunctionalsFunctionals for for 
Neural NetworksNeural Networks

Sigmoids or linear neurons operating  under parallel 
update

Both the signal and neuron transitions are smooth



NeurodynamicalNeurodynamical SystemsSystems
High dimensional non-linear systems

High dimension:  large number of neurons; 
Non-linearity: the signal function
Dynamics: feedback

1 j n….. …..

lnljl1

F

wjnwj1



Neuron ActivationsNeuron Activations
In a constant state of flux due to three 
factors:

passive decay of neuronal activity;
signal feedback from neurons within the 
same field or from neurons in other fields;
external inputs which may excite or inhibit 
the neuron.



Passive Decay ModelPassive Decay Model
Assume that the neuronal activation 
decays in accordance with the first 
order linear passive decay model:

Admits the solution

Each of the n differential equations is 
de-coupled due to absence of feedback
All activations decay smoothly to zero

n1,...,  i     ,xax iii =−=&

n1,...,  i   t),aexp( x(0)(t)x ii =−=



Adding External InputsAdding External Inputs
Add external inputs to each individual neuron

Admits the solution

Assume that the external input changes much 
more slowly than the activation
Initial activity prior to application of the input 
decays smoothly to zero.

n1,...,  i     ,I  xax iiii =+−=&

n1,...,  i   t),exp(-a-(1
a
I

  t)aexp( x(0)(t)x i
i

i
ii =+−=



Stability Easily DeterminedStability Easily Determined
Assume a quadratic 
Lyapunov function

Substitute the 
original differential 
equation into the 
system

Negative definite!



Additive Neuronal DynamicsAdditive Neuronal Dynamics
Add neuronal signal feedback from other 
neurons in the layer

Cross-coupled system of differential 
equations which is non-linear if S(.) is 
non-linear.

n1,...,  i     ,I )S(xw  xax i

n
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Shunting Neuron DynamicsShunting Neuron Dynamics
Uses a product of activations and 
external inputs in place of simple 
additions used in additive dynamics.
Embodies the fundamental modelling
methodology of the Hodgkin–Huxley 
model to be introduced in Chapter 13.



Circuit Model of a Neuronal Cell Circuit Model of a Neuronal Cell 
Membrane: Membrane: HodgkinHodgkin––Huxley EquationHuxley Equation

Minimum (K)Maximum (Na) Equilibrium (Cl)



Shunting Neuron DynamicsShunting Neuron Dynamics
Use the 
substitutions 
shown on the 
right

n1,...,  i     ,J Sw)D(x                

 I Sw)x(B  xAx
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The CohenThe Cohen––GrossbergGrossberg TheoremTheorem
Far reaching implications for neural network 
theory
Describes a generalized model of a non-linear 
dynamical system
Proves its global asymptotic stability by 
suggesting an appropriate Lyapunov function.
Later shown (1989) that a number of major 
neural network models were indeed special 
cases of this general system



The CohenThe Cohen––GrossbergGrossberg TheoremTheorem
Models that can be written in the form

admit the global Lyapunov function

If the matrix C and functions ai, bi, dj satisfy 
Symmetry: cij = cji
Positivity: ai(xi) ≥ 0
Monotonocity: dj(xj)’ ≥ 0

All trajectories are guaranteed to approach one of possibly 
infinitely many equilibrium points.  (See text for Proof)


