
Copyright © 2004
Tata McGraw Hill Publishing Co.

Neural Networks: A Classroom Approach
Satish Kumar

Department of Physics & Computer Science
Dayalbagh Educational Institute (Deemed University)

Chapter 10 Chapter 10

Attractor Neural Attractor Neural
NetworksNetworks

Human Memory is AssociativeHuman Memory is Associative
We recall facts and information by invoking a chain
of associations within a complex web of embedded
knowledge.
Chains of thought can be generated through
conscious or unconscious reasoning

Fragrance of a flower evokes a pleasant memory of the
past,
Name of a friend suddenly create a surge of emotions

Entire experiences are recalled in complete
richness of fact

on a simple cue
within fractions of a second

An Unanswered QuestionAn Unanswered Question
How do we accomplish such complex
computations so effortlessly?

Largely motivates the research currently
being conducted on associative memory

HippocampalHippocampal Pathways Involved inPathways Involved in
LongLong--term term PotentiationPotentiation (LTP)(LTP)

Three Major PathwaysThree Major Pathways
Perforant fiber pathway runs to granule
cells in the dentate region.
Granule cells in turn send axons that form
the mossy fiber pathway to cells in the
CA3 region.
CA3 cells project axons onto dendrites of
pyramidal cells in the CA1 region
(Schaffer collateral path)

LTPLTP
Extensive research reveals that a brief
high frequency stimulus train to any one
of these three pathways leads to an
enduring increase in the excitatory
postsynaptic potential (EPSP) of CA1
pyramidal neurons.
The strength of the EPSP increases in
response to the stimulus train, and this
change can last for anything from hours to
weeks.

Three Important Properties of CA1 Three Important Properties of CA1
LTP LTP

Cooperativity:
CA1 LTP cannot be produced by activating only one
fiber.
A minimum number of fibers must be activated
together to achieve LTP.

Associativity:
When both strong and weak excitatory inputs arrive
in the same dendritic region of a pyramidal cell, the
weak input gets potentiated if it is activated in
association with the strong one.

Specificity:
LTP is specific to the dendrites where it is
produced.

Hebb’sHebb’s PostulatePostulate
“When an axon of cell A excite[s] cell B
and repeatedly or persistently takes
part in firing it, some growth process or
metabolic change takes place in one or
both cells so that A’s efficacy as one of
the cells firing B is increased.”

NMDA Synapse as a Model for LTPNMDA Synapse as a Model for LTP

NMDA and NonNMDA and Non--NMDA ReceptorsNMDA Receptors
Axons from CA3 neurons
that terminate on CA1
neurons use glutamate as
their neurotransmitter.
CA1 neurons have both
NMDA and non-NMDA
receptors to which
glutamate binds.
The NMDA receptor
channel is a uniquely double
gated channel: it is usually
blocked by Mg++ ions
Initially the channel
remains blocked even when
glutamate binds to it.

Unblocking an NMDA ChannelUnblocking an NMDA Channel
Magnesium ions decouple from
the channel only if the
postsynaptic cell is sufficiently
depolarized.
An NMDA channel can become
unblocked only when

glutamate binds to the
receptor, and
the postsynaptic cell is
sufficiently depolarized by
strong cooperative inputs from
the presynaptic neurons.

Depolarization is achieved only
when many non-NMDA
receptors open in response to
the simultaneous firing of many
presynaptic inputs since
unblocking these receptors
allows an influx of Na+.

Induction of LTPInduction of LTP
Evidence suggests that the influx of calcium comes through
NMDA channels and not from the regular voltage gated
calcium channels.
Activation of non-NMDA channels depolarizes the dendritic
spines and this removes the magnesium ion block which
allows calcium to enter.
Synaptic action is thus restricted to synapses that are
active.
The influx of calcium initiates the enduring enhancement of
synaptic transmission by activating two calcium dependent
protein kinases called

calmodulin kinase
protein kinase C

These protein kinases become persistently active.
This first stage is called the induction of LTP

Maintenance of LTPMaintenance of LTP
Requires enhanced presynaptic transmitter release.
Induction of LTP requires a postsynaptic event
Maintenance requires a presynaptic event!
Some message goes back from the post to presynaptic
neuron.
Carried by a calcium activated retrograde transmitter
(believed to be nitric oxide) that diffuses from the
post to presynaptic neuron.
In the presynaptic neuron, the retrograde transmitter
activates one or more second messengers in the
presynaptic terminal that enhances transmitter release
of neurotransmitter. This maintains LTP.

Attractor Neural Network Attractor Neural Network
Associative MemoryAssociative Memory

Hebbian learning principle implies that
synaptic dynamics are governed by a
conjunction of pre and postsynaptic
activities.
Leads to powerful associative memories
that relate or associate one concept or
idea with another

Memories are Minima of a Memories are Minima of a LyapunovLyapunov
FunctionFunction

Dynamics of the system can be visualized by
imagining some high dimensional undulating energy
surface generated from a Lyapunov function
Gravitational dynamics: Rubber sheet analogy
Neural network dynamics: state of the network
maps to a point on the Lyapunov energy surface

Each point on the energy surface corresponds to
point in state space

An attractor neural network falls to an energy
state that represents the closest local minimum
under the influence of the governing vector field

Neural Network DynamicsNeural Network Dynamics
Vector field governed by

structure of connections
nature of the signal function

Network states evolve in time until the local
minimum is reached, after which the states
stop evolving further
Guaranteed for systems that follow the Cohen–
Grossberg structure:

Admit a Lyapunov function that is bounded below
and whose time derivative is negative definite

Broad ObjectiveBroad Objective
Point of local minimum at which the network
state stabilizes is to be interpreted as a
memory
Given a cue or an initial input vector, the initial
state can be represented by a point in the
energy surface
Network state evolves in time till the system
hits the energy minimum
Final state is the recalled memory vector
Therefore, the minimum energy points of the
Lyapunov surface have to be mapped to desired
memory states

The Associative Memory ModelThe Associative Memory Model
Mapping from unknown domain points to known
range points

The memory learns an underlying association
from a training data set

Output
Space

Associative
MemoryXInput

Space
Y

Matrix Associative MemoryMatrix Associative Memory

…

… …(AQ, BQ)

(A1, B1)
(A2, B2)

A’ B’

Encodes associations {Ai, Bi}Qi=1 Ai ∈ BBnn, B, Bii ∈∈ BBmm into a
connection matrix

HeteroHetero-- and Autoand Auto--associative associative
MemoryMemory

When Ai, Bi are in different spaces Ai ∈
BBnn, B, Bii ∈∈ BBmm the memory is
heteroassociative
When Ai, Bi are in the same space Ai, BBii ∈∈
BBnn the memory is autoassociative

Two Layer Two Layer FeedforwardFeedforward Neural Neural
Network Associative Memory Network Associative Memory

Connection
MatrixInput Vector Output Vector

Two Layer Feedback Neural Two Layer Feedback Neural
Network Associative MemoryNetwork Associative Memory

Connection
MatrixInput Vector Output Vector

One Layer Feedback Neural Network One Layer Feedback Neural Network
Associative MemoryAssociative Memory

Output VectorInput Vector

Connection
Matrix

HebbHebb Encoding SchemeEncoding Scheme
Consider two layers Fx,
Fy of n,m neurons with
connection matrix W
Weight matrix is
constructed using
Generalized Hebb Rule

modifies synapses
in accordance with
the product of the
presynaptic activity
with the activity of
the postsynaptic
neuron

Linear Associative MemoryLinear Associative Memory
Assume that a single association (A,B)
has been encoded into the connection
matrix W, using the outer product

Presentation of the vector A yields
perfect recall

Linear Associative MemoryLinear Associative Memory
Encoding more than one association…

superpose the individual association
matrices.

For Q associations
{Ai, Bi}, Ai ∈ BBnn, B, Bii ∈∈ BBmm

Orthogonal Linear Associative Orthogonal Linear Associative
Memory (OLAM)Memory (OLAM)

A special (and very
restrictive) case
arises if the vectors
Ak are orthonormal

orthogonal to one
another
normalized to unity
magnitude

Orthogonal Linear (OneOrthogonal Linear (One--shot) shot)
Associative Memories: ExampleAssociative Memories: Example

Encode the vector associations
A1 = (1 0 0 0) B1 = (1 2 3)
A2 = (0 1 0 0) B2 = (-2 3 1)
A3 = (0 0 1 0) B3 = (4 0 4)

Orthogonal Linear (OneOrthogonal Linear (One--shot) shot)
Associative Memories: ExampleAssociative Memories: Example

It is easy to verify that A1, A2, A3 are
fixed points of the system

Verify for A2, A3

Orthogonal Linear (OneOrthogonal Linear (One--shot) shot)
Associative Memories: ExampleAssociative Memories: Example

The addition of input vectors yields the
addition of corresponding associants

Orthogonal Linear (OneOrthogonal Linear (One--shot) shot)
Associative Memories: ExampleAssociative Memories: Example

Input vectors close to a memory recall a
vector close to its associant

More Questions…More Questions…
What is the nature of the dynamics that
underlies these models?
How do we analyze the stability of these
models?
What are the important pathologies that
arise in Hebb encoded matrix memories?
What are the capacities of these
memories?

Hopfield NetworkHopfield Network
Popularized by Nobel Laureate John
Hopfield
Basic idea:

Map stable states to correspond to certain
desired memory vectors or to solutions of an
optimization problem
Then the time evolution of dynamics leads to
a stable state where the outputs of the
network correspond to the answer

Fundamental IssuesFundamental Issues
How do we “program” the solutions of
the problem into stable states of the
network?
How do we ensure that the feedback
system designed is stable?

Hopfield Network ArchitectureHopfield Network Architecture

1 j i n
… …

Output Vector

Input Vector

Connection
Matrix

wji

sj

Ii

Neuron Characteristic and InverseNeuron Characteristic and Inverse
Assume that individual neurons have distinct
sigmoidal characteristics

With inverse

Neuron Characteristic and InverseNeuron Characteristic and Inverse

Notes on the Hopfield NetworkNotes on the Hopfield Network
The system represents a high dimension cross-
coupled non-linear dynamical system

Difficult to find find a closed form solution.
In the original Hopfield network the weight wii
is usually set to zero

Neurons do not feed back signals to themselves
The model under consideration has Cohen–
Grossberg form which necessarily dictates
that connections be symmetric for stability

Electrical Interpretation of Additive Electrical Interpretation of Additive
DynamicsDynamics

The circuit has n
amplifiers which
feedback currents
through resistances
Rji

Each amplifier has
Input capacitor Ci
Input resistance ri
Input current Ii

Electrical Circuit AnalysisElectrical Circuit Analysis
Kirchhoff current law equation at the
input node of the ith amplifier

Which is easily rearranged as

Hopfield Model has CohenHopfield Model has Cohen––GrossbergGrossberg
FormForm

Cohen–Grossberg dynamics have the general
form

where ai(xi) ≥ 0, wij = wji, dj’(xj) > 0
These models admit the Lyapunov function

⇒ Global asymptotic stability

Hopfield Model has CohenHopfield Model has Cohen––GrossbergGrossberg
FormForm

The Hopfield model
can be re-arranged
into Cohen-
Grossberg form with
straightforward
substitutions

Hopfield Model Hopfield Model LyapunovLyapunov FunctionFunction

Easily derived from the Cohen-
Grossberg Lyapunov function using the
aforesaid substitutions

Stability Analysis in Continuous TimeStability Analysis in Continuous Time

Need to show that the energy
derivative is strictly negative
From the chain rule of calculus,

Stability Analysis in Continuous TimeStability Analysis in Continuous Time
From the additive
dynamics equations

Which yields

or

LyapunovLyapunov Energy for Hopfield Energy for Hopfield
Network with High Gain NeuronsNetwork with High Gain Neurons

Binary threshold signal function is actually a
limiting case of the sigmoidal function as λ→∞
Lyapunov energy function reduces to

In the absence of external inputs

Neuron Switching in High GainNeuron Switching in High Gain
A high gain neuron switches its state
from −1 to 1 or from 1 to −1 at discrete
intervals of time by sampling its current
activation.

Stability Analysis in DiscreteStability Analysis in Discrete
TimeTime

Energy function at time instant k is

Define the change in energy from time
instant k to k+1 as ∆Ek = Ek+1 – Ek
Assume only the Ith neuron changes
state (without any loss of generality)

Stability Analysis in DiscreteStability Analysis in Discrete
TimeTime

Global Asymptotic StabilityGlobal Asymptotic Stability
The energy E is a function of states and
decreases monotonically in time.
In accordance with Lyapunov’s Theorem
(Chapter 9) the system is therefore
globally asymptotically stable.

ExampleExample
Energy function
for a Hopfield
network that
encodes two
vectors (-1,1)
and (1,-1)
The network
relaxes to an
attractor in
whose basin of
attraction the
initial state lies.

Content Addressable MemoryContent Addressable Memory
Example: recall a binary number
11001010 based on input 11001000 with
one bit distortion
Key to the correct memory vector is the
partially distorted input data itself
Recall is essentially a clean up operation
on a partially distorted input
CAMs solve the completion problem

Hamming Distance Based RecallHamming Distance Based Recall
If

the Hamming distance of the input is such
that the point lies within the basin of
attraction of the memory which is
represented by a distorted input

Then
we expect that the correct memory should
get recalled

Encoding Memories via Outer Encoding Memories via Outer
ProductsProducts

Bipolar outer product encoding

Where Xk = 2Ak -1, weight matrix W is
symmetric, W = WT

Original model Zero off the
diagonal elements

Avoids identity
operator type
behaviour

Asynchronous Neuron UpdateAsynchronous Neuron Update
Standard Hopfield network update is always
asynchronous and deterministic

A neuron is randomly selected for update at an
instant of time.
The neuron activation transforms to the new
signal using the deterministic signal function

The number of times any neuron gets a chance
to update is the same on average
Serial asynchronous update guarantees that
the network converges to a fixed point
equilibrium

Synchronous Neuron UpdateSynchronous Neuron Update
Activations of all neurons are calculated
at an instant of time
All neurons update their signal values
together to generate the signal vector
at the next instant of time
Under a synchronous update the
Hopfield network approaches either a
fixed point equilibrium or a two-step
limit cycle

Operational Summary of the Operational Summary of the
Hopfield CAM algorithmHopfield CAM algorithm

Operational Summary of the Operational Summary of the
Hopfield CAM algorithmHopfield CAM algorithm

MATLAB Code to Implement MATLAB Code to Implement
Hopfield CAMHopfield CAM

flag = 0; % Initialize flag

while flag ˜= n
permindex = randperm(n);% Randomize order
old_signal_vector = signal_vector;

for j = 1:n % update all neurons once per epoch
act_vec = signal_vector * zd_wt_mat;
if act_vec(permindex(j)) > 0
signal_vector(permindex(j)) = 1;

elseif act_vec(permindex(j)) < 0
signal_vector(permindex(j)) = -1;

end
end

flag = signal_vector*old_signal_vector;
end

disp(’The recalled vector is ’)
0.5*(signal_vector + 1)

mem_vectors = [
1 1 0 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0];
q = size(mem_vectors,1);% number of vectors
n = size(mem_vectors,2);% dim of the vectors
bip_mem_vecs = 2*(mem_vectors) - 1; %

Convert

% Initialize and compute the weight matrix
zd_wt_mat = zeros(n,n);
for i=1:q
zd_wt_mat = zd_wt_mat +

bip_mem_vecs(i,:)’*bip_mem_vecs(i,:);
end
zd_wt_mat = zd_wt_mat - q*eye(n);% Zero diag

probe = input(’Enter the probe vector: ’);
signal_vector = 2*probe-1;

Example 1Example 1
Encode, recall, analyze stability

110, 001

Example 1Example 1
Network architecture

1 2 3

-2

-2

-2

-2

2

2

Basins of AttractionBasins of Attraction
Basin of attraction of 110

011 101 110

100010001

000

111

Basin of attraction of 001

Multiple EncodingMultiple Encoding
When taking outer
products note that
Xk Xk

T = (-Xk)(-Xk
T) =

Xk
c (Xk

c)T

In our example 100
and 011 are
complements!

Leads to multiple
encoding

Example 2: Limit CyclesExample 2: Limit Cycles
Now encode 110, 000

Example 2Example 2
Network architecture

2

1 2 32

Basins of AttractionBasins of Attraction

111 Spurious attractor

2-step limit cycle

011 101 110

2-step limit cycle

010 100001Spurious attractor

000

Recall of Memories in Continuous Recall of Memories in Continuous
TimeTime

Encode (1,1) (-1,-1)

Write down the additive
dynamics equations (no
inputs)

Integrate 4th order
Runge Kutta Technique

Recall of Memories in Continuous Recall of Memories in Continuous
TimeTime

Spurious AttractorsSpurious Attractors
Undesired attractors are called spurious
attractors

Complement states
Mixture states
Spin glass states
Alien attractors

Error Correction with Bipolar Error Correction with Bipolar
EncodingEncoding

Bipolar outer product encoding builds an
error correction capability into the
decoding process

Assume a weight matrix W encoding Q
vectors, and a probe equal to one of the
encoded vectors
Perform a signal noise decomposition…

SignalSignal--Noise DecompositionNoise Decomposition

Correction CoefficientCorrection Coefficient
Note the correction coefficient

cik = Xi
T Xk = n – 2 hik

Important ObservationsImportant Observations
If Xk has greater than half of its bits
different from Xi, Xk

c will have less than
half of its bits different from Xi
In the limiting case if Xk has all n bits
different from Xi, Xk = Xi

c, -Xk=-Xi
c=Xi

If Xk has half of its bits different from
Xi, -Xk also has half its bits different
from Xi

Operational ImplicationsOperational Implications
For vectors in the noise term whose
Hamming distance is greater than n/2
from the memory it is more beneficial to
first negate and then add them to the
signal term since negation brings them
closer to the signal vector
Not if Hamming distance of the noise
vector is less than n/2

Correction Coefficient Correction Coefficient vsvs
Hamming DistanceHamming Distance

n/2

Cik Vectors at distance
n/2 are removed
from the sumn

Vectors at distance n are
negated and added after
amplifying n times

-n

0
hikn

Vectors at distance 0 are
added after amplifying n
times

Error Performance of Hopfield Error Performance of Hopfield
NetworksNetworks

In using outer product
encoding the ji
component of the weight
matrix can be expressed
as

The activation of the ith

neuron in response to
presentation of probe Xp
is as follows:

signal noise

SignalSignal––Noise RatioNoise Ratio
Assumption: Encoded vectors were
generated by a sequence of Bernoulli
trials

The noise term is asymptotically Gaussian
distributed. Gaussian distribution has a
mean of zero and a variance n(Q-1)
The signal variance is n2 and its mean is 0

Probability of Correct RecallProbability of Correct Recall
The probability for correct recall for one bit
can be shown to take the form

Stability of most of the fundamental
memories, requires the minimum signal–noise
ratio satisfies the condition

See text for algebra.

Application: Pattern CompletionApplication: Pattern Completion
Consider three 12×12 pixel based images

Application: Pattern CompletionApplication: Pattern Completion

Contd.

Application: Pattern CompletionApplication: Pattern Completion

Contd.

Application: Pattern CompletionApplication: Pattern Completion

BrainBrain--StateState--inin--aa--Box (BSB) Neural Box (BSB) Neural
NetworkNetwork

Predecessor of the Hopfield network
Extends the linear associator
Similar to the Hopfield network

autoassociative model
connection matrix computed using outer products

Operation of both models is also very similar
Differences arising primarily

In the way activations are computed in each iteration
Signal function

BSB stands apart from other models in its use of the
linear-threshold signal function.

Operational DetailsOperational Details
Activation Function

Signal Function

Weight Matrix

Arranged so that Ai is an eigenvector of W with
eigenvalue λi

Operational Details: Signal FunctionOperational Details: Signal Function
Piecewise linear
signal function.
States are boxed
into the hypercube:
brain-state-in-a-
box!

-1

10

1

-1 xi
k

si
k

Operational Summary of the BSB Operational Summary of the BSB
ModelModel

Rework Signal Update EquationRework Signal Update Equation
Neuron-specific
scalar form of the
BSB vector update
equation with γ = 1
and δ = 0

BSB is a special case
of Cohen–Grossberg
dynamics (see text)

Kronecker delta

SignalSignal--Sum Exchange (Sum Exchange (GrossbergGrossberg))
Rewrite the discrete
equation in continuous
form
Transform variables
Re-write the equation in
transformed space:
Additive Dynamics

Lyapunov Function

BSB Network TrajectoriesBSB Network Trajectories
Encode
A1 = (1,-1), A2 = (1,1)

Eigenvectors
λ1 = 0.04 λ2=0.03

Choose
γ = α = 1, δ = 0

MATLAB Code for BSBMATLAB Code for BSB
y = -1;
inc = 0.1;
while(x <=1)
while(y <= 1);
s(:,1) = [x y]’;
for i = 2:150
act = gamma*s(:,i-1)’+alpha*s(:,i-1)’*W + delta*s(:,1)’;
for j=1:2
if (act(j) <= lim_l) s(j,i) = lim_l;
elseif (act(j) >= lim_u) s(j,i) = lim_u;
else s(j,i) = act(j);
end
end
end
...
...%Line plotting code goes here
...
y = y + inc;
end
y = -1;
x = x + inc;
end

delta = 0;
gamma = 1;
alpha = 1;
lim_u = 1;
lim_l = -1;
lambda1 = 0.04;
lambda2 = 0.03;
%Specify vectors to encode
x1 = [1 -1]’;
x2 = [1 1]’;
%Normalize them
x1_n = x1/sqrt(2);
x2_n = x2/sqrt(2);
%Encode them
W = lambda1*x1_n * x1_n’ + lambda2*x2_n *

x2_n’;
figure(1);
hold on;
grid on;
%Start at an initial point of (-1,-1) and go to (1,1)
%in steps pf 0.1
x = -1;

BSB ApplicationsBSB Applications
Speech perception and probability
learning
Multistable perception
Cognitive computation
Radar signal categorization

Design of High Dimensional and Design of High Dimensional and
Complex Pattern ClassifiersComplex Pattern Classifiers

Analytical methods or techniques that use local
derivatives for gradient descent turn out to be
inadequate
Error surfaces of non-linear systems in high
dimensional spaces have multiple minima, and
finding the true global minimum is indeed a
difficult task
Exhaustive search in solution space to find a
good set of parameters is almost impossible
Increasing complexity of the problem is
accompanied by less training data and less prior
knowledge

Simulated AnnealingSimulated Annealing
Provides a general framework for the
optimization of the behaviour of complex
systems
Operates by introducing noise in a
controllable fashion into the operational
dynamics of the system
Robust iterative search

Configuration, Temperature, Ground Configuration, Temperature, Ground
StateState

A specific combination of neuron states is a
configuration of the network

In an n node network there are 2n configurations
Basic Idea:

Generate different configurations of the system at
various values of a control parameter called the
temperature
Gradually reduce the value of this parameter to
search for an optimal or ground state solution to the
problem

An Important Result from An Important Result from
Statistical MechanicsStatistical Mechanics

Low energy configurations are very few:
Corresponding to the vectors that are encoded into
the network and other spurious memories

Many more possible configurations that
correspond to higher energies
From statistical mechanics:

A system is in thermal equilibrium when a
configuration γ with energy Eγ occurs with
probability

Boltzmann Probability Distribution
Partition Function

Simulated Annealing ProcedureSimulated Annealing Procedure
Randomize neuron states once in the beginning,
and initialize the temperature to a high value.
Choose a neuron I randomly from the network
Compute the energy EA of the present
configuration A
Flip the state of neuron I to generate a new
configuration B
Compute energy EB of configuration B

Contd.

Simulated Annealing ProcedureSimulated Annealing Procedure
If EB < EA accept configuration B
Else accept configuration B with probability
exp(-∆E/T), ∆E = EB – EA

Continue selecting and testing neurons
randomly, and set their states several times in
this way until a thermal equilibrium is reached.
Finally, lower the temperature and repeat the
procedure.

NotesNotes
At high temperatures

all configurations are somewhat equally likely.
transitions to energetically unfavourable states are
frequent

At lower temperatures
transitions to energetically unfavourable states
become less frequent
search becomes more like the usual descent
procedures

If the cooling is sufficiently slow, the network has
a very high probability of finding itself in an
optimal configuration that represents a minimum
energy configuration

NotesNotes
Critical aspect:

Choice of initial temperature
Annealing schedule Tk+1 = cTk

Typical working range : 0.8-0.9

Stochastic Simulated Annealing Stochastic Simulated Annealing
Algorithm: Algorithm: Hopfield NetworkHopfield Network

Contd.

Stochastic Simulated Annealing Stochastic Simulated Annealing
AlgorithmAlgorithm

ExampleExample
Consider a Hopfield network encoding
vectors A1 = (110001) A2 = (101010)

Hopfield Net SA: Simulation ResultHopfield Net SA: Simulation Result

Hopfield Net SA: Simulation ResultHopfield Net SA: Simulation Result

BoltzmannBoltzmann MachineMachine
Extension of the discrete Hopfield network
Replaces the deterministic local search
dynamics by randomized local search
dynamics.
Introduces a powerful stochastic learning
algorithm in place of the simple Hebbian
rule
Relaxation is done using the simulated
annealing procedure

BoltzmannBoltzmann Machine: ArchitectureMachine: Architecture

Output layerHidden layer

Bidirectional
connections

(a) Completion network (b) Classification network

Hidden layer

Input layer
Input-output

layer

Hopfield Network Hopfield Network vsvs BoltzmannBoltzmann
MachinesMachines

Similarities
Neuron states are bipolar
Weights are symmetric
Neurons are selected at
random for asynchronous
update
There is no self-feedback

Differences (Contd.)
Learning

Hopfield network vectors
are encoded into the
system using outer
product correlation
encoding and there is no
separate learning phase
Boltzmann machines
learning is based on
simulated annealing and
gradient descent

Differences
Architecture

Boltzmann machine uses a
hidden layer

Neuron update
Hopfield network is
deterministic
Boltzmann networks is
stochastic

Operational DetailsOperational Details
Consider a Boltzmann completion network with
configurations described by an energy function

Glauber Dynamics: for the Ith neuron,

BoltzmannBoltzmann Machine Relaxation Machine Relaxation
Procedure: Operational SummaryProcedure: Operational Summary

Contd.

BoltzmannBoltzmann Machine Relaxation Machine Relaxation
Procedure: Operational SummaryProcedure: Operational Summary

Learning Objective in the Learning Objective in the BoltzmannBoltzmann
MachineMachine

Find a set of weights such that at any
given temperature, the actual
distribution P(α) matches the desired
distribution Q(α) as closely as possible.
Use standard gradient descent with a
relative entropy error function:
Kullback-Leibler Distance

Final Weight Update ExpressionFinal Weight Update Expression
Define

Weight change dictated by

Learning component Unlearning component

See text for algebra.

MATLAB Code to Implement MATLAB Code to Implement
BoltzmannBoltzmann Learning AlgorithmLearning Algorithm

clamped_signals = [repmat(Ab, [rep_num/Q 1])
clamped_h_signals];

Xc = clamped_signals * W;
pc = 1./(1 + exp(-Xc./T)); % compute the flip probabilities
randc = rand(rep_num, 3); % generate random #s in (0,1)
for i=1:rep_num
j = round(1+2*rand);
if (randc(i,j) < pc(i,j))
clamped_signals(i,j) = 1;
else clamped_signals(i,j) = -1;
end
end
clamped_h_signals = clamped_signals(:,3:4);
end
T = T*c
end
clamped_signals = [repmat(Ab, [rep_num 1])

clamped_h_signals];
%Collect stats and change weights
Expc = (1/rep_num)*clamped_signals’ * clamped_signals
Expf = (1/rep_num)*free_signals’* free_signals
deltaW = Expc(:,1:3) - Expf(:,1:3);
W = W + (eta/T) * deltaW.* [(1-eye(3)); ones(1,3)]
end

for k = 1:10
rand(’state’,sum(100*clock));
free_signals = [(2*round(rand(rep_num, 3)) - 1)...
-ones(rep_num,1)];
clamped_h_signals = [(2*round(rand(rep_num,1)) -

1)...
-ones(rep_num,1)];
T = 10;
while (T > 1)
for relax = 1:num_cycles
rand(’state’,sum(100*clock));
Xf = free_signals * W; % compute activations
pf = 1./(1 + exp(-Xf./T));% compute the flip

probabilities
randf = rand(rep_num, 3); % generate random #s in

(0,1)
for i = 1:rep_num % work down network instances
j = round(1+2*rand);
if (randf(i,j) < pf(i,j))
free_signals(i,j) = 1;
else free_signals(i,j) = -1;
end
end
rand(’state’,sum(100*clock));

Simulation ResultSimulation Result

Bidirectional Associative MemoryBidirectional Associative Memory
Two field attractor neural network
introduced by Kosko
Continuous BAMs employ additive
dynamics
Heteroassociative in nature

BAM ArchitectureBAM Architecture

FX FY

WT

W

A B

m neuronsn neurons

Relaxation ProcedureRelaxation Procedure
Through a sequence
of forward and
reverse
transmissions
A bidirectional
relaxation process
Eventually leading to
a bidirectional
equilibrium

Signal Update: Forward PassSignal Update: Forward Pass
Compute activations of FY neurons

Generate bipolar signals on FY neurons

Signal Update: Reverse PassSignal Update: Reverse Pass
Compute activations of FX neurons

Generate bipolar signals on FX neurons

Encoding Associations into a BAM Encoding Associations into a BAM
SystemSystem

Use bipolar outer product encoding
Programming each hetero-association
Hebbian Law embedded
Given T = {Xk, Yk}, Xk ∈ℜn Yk ∈ℜm

These are bipolar

Operational Summary of BAM Operational Summary of BAM
AlgorithmAlgorithm

Contd.

Operational Summary of BAM Operational Summary of BAM
AlgorithmAlgorithm

MATLAB Code to Implement MATLAB Code to Implement
BAM AlgorithmBAM Algorithm

for i = 1 : p % Set up signals
if act_y(i) > 0 signal_y(i) = 1;
elseif act_y(i) < 0 signal_y(i) = -1;
end
end
if (k > 1) % Compare for stability if iteration > 1
compare_y = isequal(signal_y, pattern_y(k-1,:));
else compare_y = 0;
end
pattern_y(k,:) = signal_y; % Store the signal on Fy
act_x = signal_y * wt_matrix’;% Compute activations of Fx
for i = 1 : n % Set up signals
if act_x(i) > 0 signal_x(i) = 1;
elseif act_x(i) < 0 signal_x(i) = -1;
end
end
k = k + 1; % Increment time
compare_x = isequal(signal_x, pattern_x(k-1,:)); % Compare
pattern_x(k,:) = signal_x; % and store the signal on Fx
flag = compare_x*compare_y; % Check for bidirectional

eqlm.
end
pattern_x % Display update traces
pattern_y

n = 5; % Dimension of Fx
p = 4; % Dimension of Fy
q = 2; % Number of associations
mem_vectorsx = [0 1 0 1 0; 1 1 0 0 0]; %Specify Fx

vectors
mem_vectorsy = [1 0 0 1; 0 1 0 1]; %Specify Fy

vectors
bip_mem_vecsx = 2*mem_vectorsx-1; %Convert to

bipolar
bip_mem_vecsy = 2*mem_vectorsy-1;
wt_matrix = zeros(n,p); %Initialize weight matrix
for i=1:q %and recursively compute
wt_matrix = wt_matrix +

bip_mem_vecsx(i,:)’*bip_mem_vecsy(i,:);
end
k = 1; % Set up time index
probe = [0 1 0 1 1]; % Set up probe
signal_x = 2*probe - 1; % Set Fx signals to probe
signal_y = randomize(1,p); % Randomize Fy signals
pattern_x(k,:) = signal_x; % store the pattern on Fx
pattern_y(k,:) = signal_y; % store the pattern on Fy
flag = 0; % Indicates bidirectional eqlm.
while flag ˜=1
act_y = signal_x * wt_matrix; % Computer Fx

activations

HandworkedHandworked ExampleExample
Encode the associations

A1 = (0 1 0 1 0)T B1 = (1 0 0 1)T

A2 = (1 1 0 0 0)T B2 = (0 1 0 1)T

HandworkedHandworked ExampleExample
Final weight matrix

Weight matrix
transpose

HandworkedHandworked ExampleExample
Check bidirectional stability for first
association

X1
TW = (4 -4 -6 6) → (1 -1 -1 1) = Y1

T

Y1
TWT = (-4 4 -4 4 -4) → (-1 1 -1 1 -1) = X1

T

E(X1,Y1) = - X1
TWY1 = -20 = - Y1

TWTX1

Verify for the second…

Accuracy of Recall Based on Accuracy of Recall Based on
Hamming DistanceHamming Distance

Probe vector X’ = (-1 1 1 1 -1)T at a Hamming
distance of 1 from X1

Then: (X’)TW = (4 -4 -2 2) → (1 -1 -1 1) = Y1
T

X1,Y1 association recalled

Probe vector X’’ = (-1 -1 1 1 -1)T at a Hamming
distance of 2 from X1 and 1 from X1

c

Then: (X’’)TW = (4 -4 2 -2) → (1 -1 1 -1) = (Y1
c)T

X1
c,Y1

c association recalled

BAM Stability AnalysisBAM Stability Analysis
Is there a guarantee that the system
will always fall to a stable attractor?

Energy function:
Kosko suggests using an energy function
which is the average of the of the forward
and reverse signal energies:

E(A,B) = -ATWB

BAM Stability TheoremBAM Stability Theorem
Any real connection matrix W defines a
BAM system that is bidirectionally
stable.

See text for proof.

Error Correction in Error Correction in BAMsBAMs
As powerful as that of Hopfield
networks
Comes with a fundamental assumption:

Function continuity: H(Ai, Aj)/n ≈ H(Bi, Bj)/m

Coefficient cik is computed from domain space inner
product but applied to range space inner product.

Therefore continuity must hold.

Correction CoefficientsCorrection Coefficients
With the continuity assumption in place,
the correction coefficients cik correct
the noise terms in a way that is identical
to the correction explained earlier in the
context of Hopfield networks:

Memory Annihilation of Structured Memory Annihilation of Structured
Maps in Maps in BAMsBAMs

An important pathological case
Under certain mild conditions, the
memory of all associations is lost

Memory of encoded associations between
sets of equidistant vectors (called
structured maps) annihilates when the
number of such associations exceeds a lower
bound.
See text for details.

Continuous Continuous BAMsBAMs
Discrete time treatment carries over to the
continuous time case
Assume that neuron signal functions are
sigmoidal
Each layer of neurons is governed by an
additive dynamics system of equations:

Energy FunctionEnergy Function
For continuous BAMs the energy
function takes the form:

Time derivative of this function is
negative: proves stability

Adaptive Adaptive BAMsBAMs
Employ Signal Hebbian Learning
Hebb’s observations translate to the
following rules:

The synaptic efficacy between two
simultaneously active neurons is selectively
increased
The synaptic efficacy between two
asynchronously active neurons is selectively
decreased

Signal Signal HebbHebb LawLaw

i j
Sj(xj)Si(xi)

wij

Signal product dictates weight change

Solution

HebbHebb Learning Generates Outer Learning Generates Outer
Products in the LimitProducts in the Limit

Consider si = sj = 1, or si = sj = -1
Then

Or wij(t) → 1 as t → ∞
Similarly if si = 1, sj = -1, or si = -1 sj = 1 then wij(t) → -1 as
t → ∞
This clearly shows that the asymptotic encoding of a signal
Hebb Law generates a component weight wij which is none
other than the signal product sisj, or the outer product
generates

Adaptive BAM EquationsAdaptive BAM Equations
Additive activation dynamics with Signal
Hebb learning embedded

Energy FunctionEnergy Function
Adaptive BAMs governed by the energy
function

Easy to show that the time derivative is
negative, and adaptive BAMs settle down
into a stable configuration

Adaptive resonance

BAM Simulation ExampleBAM Simulation Example
Encode the pixel
image associations as
shown alongside
Input image defined
on 12×12 grid
Output image
defined on 12×10
grid

SimulationSimulation
Presentation of a 40% distorted plane

SimulationSimulation
Final association recalled

