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Human Memory is AssociativeHuman Memory is Associative
We recall facts and information by invoking a chain 
of associations within a complex web of embedded 
knowledge. 
Chains of thought can be generated through 
conscious or unconscious reasoning

Fragrance of a flower evokes a pleasant memory of the 
past, 
Name of a friend suddenly create a surge of emotions

Entire experiences are recalled in complete 
richness of fact 

on a simple cue
within fractions of a second



An Unanswered QuestionAn Unanswered Question
How do we accomplish such complex 
computations so effortlessly?

Largely motivates the research currently 
being conducted on associative memory



HippocampalHippocampal Pathways Involved inPathways Involved in
LongLong--term term PotentiationPotentiation (LTP)(LTP)



Three Major PathwaysThree Major Pathways
Perforant fiber pathway runs to granule 
cells in the dentate region. 
Granule cells in turn send axons that form 
the mossy fiber pathway to cells in the 
CA3 region. 
CA3 cells project axons onto dendrites of 
pyramidal cells in the CA1 region 
(Schaffer collateral path)



LTPLTP
Extensive research reveals that a brief 
high frequency stimulus train to any one 
of these three pathways leads to an 
enduring increase in the excitatory 
postsynaptic potential (EPSP) of CA1 
pyramidal neurons.
The strength of the EPSP increases in 
response to the stimulus train, and this 
change can last for anything from hours to 
weeks.



Three Important Properties of CA1 Three Important Properties of CA1 
LTP LTP 

Cooperativity: 
CA1 LTP cannot be produced by activating only one 
fiber. 
A minimum number of fibers must be activated 
together to achieve LTP. 

Associativity: 
When both strong and weak excitatory inputs arrive 
in the same dendritic region of a pyramidal cell, the 
weak input gets potentiated if it is activated in 
association with the strong one. 

Specificity: 
LTP is specific to the dendrites where it is 
produced.



Hebb’sHebb’s PostulatePostulate
“When an axon of cell A excite[s] cell B 
and repeatedly or persistently takes 
part in firing it, some growth process or 
metabolic change takes place in one or 
both cells so that A’s efficacy as one of 
the cells firing B is increased.”



NMDA Synapse as a Model for LTPNMDA Synapse as a Model for LTP



NMDA and NonNMDA and Non--NMDA ReceptorsNMDA Receptors
Axons from CA3 neurons 
that terminate on CA1 
neurons use glutamate as 
their neurotransmitter. 
CA1 neurons have both 
NMDA and non-NMDA 
receptors to which 
glutamate binds.
The NMDA receptor 
channel is a uniquely double 
gated channel: it is usually 
blocked by Mg++ ions
Initially the channel 
remains blocked even when 
glutamate binds to it.



Unblocking an NMDA ChannelUnblocking an NMDA Channel
Magnesium ions decouple from 
the channel only if the 
postsynaptic cell is sufficiently 
depolarized.
An NMDA channel can become 
unblocked only when 

glutamate binds to the 
receptor, and
the postsynaptic cell is 
sufficiently depolarized by 
strong cooperative inputs from 
the presynaptic neurons.

Depolarization is achieved only 
when many non-NMDA 
receptors open in response to 
the simultaneous firing of many 
presynaptic inputs since 
unblocking these receptors 
allows an influx of Na+.



Induction of LTPInduction of LTP
Evidence suggests that the influx of calcium comes through 
NMDA channels and not from the regular voltage gated 
calcium channels. 
Activation of non-NMDA channels depolarizes the dendritic
spines and this removes the magnesium ion block which 
allows calcium to enter.
Synaptic action is thus restricted to synapses that are 
active.
The influx of calcium initiates the enduring enhancement of 
synaptic transmission by activating two calcium dependent 
protein kinases called

calmodulin kinase
protein kinase C

These protein kinases become persistently active. 
This first stage is called the induction of LTP



Maintenance of LTPMaintenance of LTP
Requires enhanced presynaptic transmitter release. 
Induction of LTP requires a postsynaptic event 
Maintenance requires a presynaptic event!
Some message goes back from the post to presynaptic
neuron. 
Carried by a calcium activated retrograde transmitter 
(believed to be nitric oxide) that diffuses from the 
post to presynaptic neuron. 
In the presynaptic neuron, the retrograde transmitter 
activates one or more second messengers in the 
presynaptic terminal that enhances transmitter release 
of neurotransmitter. This maintains LTP.



Attractor Neural Network Attractor Neural Network 
Associative MemoryAssociative Memory

Hebbian learning principle implies that 
synaptic dynamics are governed by a 
conjunction of pre and postsynaptic 
activities.
Leads to powerful associative memories 
that relate or associate one concept or 
idea with another



Memories are Minima of a Memories are Minima of a LyapunovLyapunov
FunctionFunction

Dynamics of the system can be visualized by 
imagining some high dimensional undulating energy 
surface generated from a Lyapunov function
Gravitational dynamics: Rubber sheet analogy
Neural network dynamics: state of the network 
maps to a point on the Lyapunov energy surface

Each point on the energy surface corresponds to 
point in state space

An attractor neural network falls to an energy 
state that represents the closest local minimum 
under the influence of the governing vector field



Neural Network DynamicsNeural Network Dynamics
Vector field governed by

structure of connections 
nature of the signal function

Network states evolve in time until the local 
minimum is reached, after which the states 
stop evolving further
Guaranteed for systems that follow the Cohen–
Grossberg structure:

Admit a Lyapunov function that is bounded below 
and whose time derivative is negative definite



Broad ObjectiveBroad Objective
Point of local minimum at which the network 
state stabilizes is to be interpreted as a 
memory
Given a cue or an initial input vector, the initial 
state can be represented by a point in the 
energy surface
Network state evolves in time till the system 
hits the energy minimum
Final state is the recalled memory vector
Therefore, the minimum energy points of the 
Lyapunov surface have to be mapped to desired 
memory states



The Associative Memory ModelThe Associative Memory Model
Mapping from unknown domain points to known 
range points

The memory learns an underlying association 
from a training data set

Output 
Space

Associative 
MemoryXInput 

Space
Y



Matrix Associative MemoryMatrix Associative Memory

…

… …(AQ, BQ)

(A1, B1)
(A2, B2)

A’ B’

Encodes associations {Ai, Bi}Qi=1 Ai ∈ BBnn, B, Bii ∈∈ BBmm into a 
connection matrix



HeteroHetero-- and Autoand Auto--associative associative 
MemoryMemory

When Ai, Bi are in different spaces Ai ∈
BBnn, B, Bii ∈∈ BBmm the memory is 
heteroassociative
When Ai, Bi are in the same space Ai, BBii ∈∈
BBnn the memory is autoassociative



Two Layer Two Layer FeedforwardFeedforward Neural Neural 
Network Associative Memory Network Associative Memory 

Connection
MatrixInput Vector Output Vector



Two Layer Feedback Neural Two Layer Feedback Neural 
Network Associative MemoryNetwork Associative Memory

Connection
MatrixInput Vector Output Vector



One Layer Feedback Neural Network One Layer Feedback Neural Network 
Associative MemoryAssociative Memory

Output VectorInput Vector

Connection
Matrix



HebbHebb Encoding SchemeEncoding Scheme
Consider two layers Fx, 
Fy of n,m neurons with 
connection matrix W
Weight matrix is 
constructed using 
Generalized Hebb Rule

modifies synapses 
in accordance with 
the product of the 
presynaptic activity 
with the activity of 
the postsynaptic 
neuron



Linear Associative MemoryLinear Associative Memory
Assume that a single association (A,B)
has been encoded into the connection 
matrix W, using the outer product

Presentation of the vector A yields 
perfect recall



Linear Associative MemoryLinear Associative Memory
Encoding more than one association…

superpose the individual association 
matrices.

For Q associations
{Ai, Bi}, Ai ∈ BBnn, B, Bii ∈∈ BBmm



Orthogonal Linear Associative Orthogonal Linear Associative 
Memory (OLAM)Memory (OLAM)

A special (and very 
restrictive) case 
arises if the vectors 
Ak are orthonormal

orthogonal to one 
another 
normalized to unity 
magnitude



Orthogonal Linear (OneOrthogonal Linear (One--shot) shot) 
Associative Memories: ExampleAssociative Memories: Example

Encode the vector associations
A1 = (1 0 0 0) B1 = (1 2 3)
A2 = (0 1 0 0) B2 = (-2 3 1)
A3 = (0 0 1 0) B3 = (4 0 4)



Orthogonal Linear (OneOrthogonal Linear (One--shot) shot) 
Associative Memories: ExampleAssociative Memories: Example

It is easy to verify that A1, A2, A3 are 
fixed points of the system

Verify for A2, A3



Orthogonal Linear (OneOrthogonal Linear (One--shot) shot) 
Associative Memories: ExampleAssociative Memories: Example

The addition of input vectors yields the 
addition of corresponding associants



Orthogonal Linear (OneOrthogonal Linear (One--shot) shot) 
Associative Memories: ExampleAssociative Memories: Example

Input vectors close to a memory recall a 
vector close to its associant



More Questions…More Questions…
What is the nature of the dynamics that 
underlies these models?
How do we analyze the stability of these 
models?
What are the important pathologies that 
arise in Hebb encoded matrix memories?
What are the capacities of these 
memories?



Hopfield NetworkHopfield Network
Popularized by Nobel Laureate John 
Hopfield
Basic idea:

Map stable states to correspond to certain 
desired memory vectors or to solutions of an 
optimization problem
Then the time evolution of dynamics leads to 
a stable state where the outputs of the 
network correspond to the answer



Fundamental IssuesFundamental Issues
How do we “program” the solutions of 
the problem into stable states of the 
network?
How do we ensure that the feedback 
system designed is stable?



Hopfield Network ArchitectureHopfield Network Architecture

1 j i n
… …

Output Vector

Input Vector

Connection
Matrix

wji

sj

Ii



Neuron Characteristic and InverseNeuron Characteristic and Inverse
Assume that individual neurons have distinct 
sigmoidal characteristics

With inverse



Neuron Characteristic and InverseNeuron Characteristic and Inverse



Notes on the Hopfield NetworkNotes on the Hopfield Network
The system represents a high dimension cross-
coupled non-linear dynamical system

Difficult to find find a closed form solution.
In the original Hopfield network the weight wii
is usually set to zero

Neurons do not feed back signals to themselves
The model under consideration has Cohen–
Grossberg form which necessarily dictates 
that connections be symmetric for stability



Electrical Interpretation of Additive Electrical Interpretation of Additive 
DynamicsDynamics

The circuit has n 
amplifiers which 
feedback currents 
through resistances 
Rji

Each amplifier has
Input capacitor Ci
Input resistance ri
Input current Ii



Electrical Circuit AnalysisElectrical Circuit Analysis
Kirchhoff current law equation at the 
input node of the ith amplifier

Which is easily rearranged as



Hopfield Model has CohenHopfield Model has Cohen––GrossbergGrossberg
FormForm

Cohen–Grossberg dynamics have the general 
form

where ai(xi) ≥ 0, wij = wji, dj’(xj) > 0
These models admit the Lyapunov function

⇒ Global asymptotic stability



Hopfield Model has CohenHopfield Model has Cohen––GrossbergGrossberg
FormForm

The Hopfield model 
can be re-arranged 
into Cohen-
Grossberg form with 
straightforward 
substitutions



Hopfield Model Hopfield Model LyapunovLyapunov FunctionFunction

Easily derived from the Cohen-
Grossberg Lyapunov function using the 
aforesaid substitutions



Stability Analysis in Continuous TimeStability Analysis in Continuous Time

Need to show that the energy 
derivative is strictly negative
From the chain rule of calculus,



Stability Analysis in Continuous TimeStability Analysis in Continuous Time
From the additive 
dynamics equations

Which yields

or



LyapunovLyapunov Energy for Hopfield Energy for Hopfield 
Network with High Gain NeuronsNetwork with High Gain Neurons

Binary threshold signal function is actually a 
limiting case of the sigmoidal function as λ→∞
Lyapunov energy function reduces to

In the absence of external inputs



Neuron Switching in High GainNeuron Switching in High Gain
A high gain neuron switches its state 
from −1 to 1 or from 1 to −1 at discrete 
intervals of time by sampling its current 
activation.



Stability Analysis in DiscreteStability Analysis in Discrete
TimeTime

Energy function at time instant k is

Define the change in energy from time 
instant k to k+1 as ∆Ek = Ek+1 – Ek
Assume only the Ith neuron changes 
state (without any loss of generality)



Stability Analysis in DiscreteStability Analysis in Discrete
TimeTime



Global Asymptotic StabilityGlobal Asymptotic Stability
The energy E is a function of states and 
decreases monotonically in time.
In accordance with Lyapunov’s Theorem 
(Chapter 9) the system is therefore 
globally asymptotically stable.



ExampleExample
Energy function 
for a Hopfield 
network that 
encodes two 
vectors (-1,1)
and (1,-1)
The network 
relaxes to an 
attractor in 
whose basin of 
attraction the 
initial state lies.



Content Addressable MemoryContent Addressable Memory
Example: recall a binary number 
11001010 based on input 11001000 with  
one bit distortion
Key to the correct memory vector is the  
partially distorted input data itself
Recall is essentially a clean up operation 
on a partially distorted input
CAMs solve the completion problem



Hamming Distance Based RecallHamming Distance Based Recall
If

the Hamming distance of the input is such 
that the point lies within the basin of 
attraction of the memory which is 
represented by a distorted input

Then
we expect that the correct memory should 
get recalled



Encoding Memories via Outer Encoding Memories via Outer 
ProductsProducts

Bipolar outer product encoding

Where Xk = 2Ak -1, weight matrix W is 
symmetric, W = WT

Original model Zero off the 
diagonal elements

Avoids identity 
operator type 
behaviour



Asynchronous Neuron UpdateAsynchronous Neuron Update
Standard Hopfield network update is always 
asynchronous and deterministic

A neuron is randomly selected for update at an 
instant of time.
The neuron activation transforms to the new 
signal using the deterministic signal function

The number of times any neuron gets a chance 
to update is the same on average
Serial asynchronous update guarantees that 
the network converges to a fixed point 
equilibrium



Synchronous Neuron UpdateSynchronous Neuron Update
Activations of all neurons are calculated 
at an instant of time
All neurons update their signal values 
together to generate the signal vector 
at the next instant of time
Under a synchronous update the 
Hopfield network approaches either a 
fixed point equilibrium or a two-step 
limit cycle



Operational Summary of the Operational Summary of the 
Hopfield CAM algorithmHopfield CAM algorithm



Operational Summary of the Operational Summary of the 
Hopfield CAM algorithmHopfield CAM algorithm



MATLAB Code to Implement MATLAB Code to Implement 
Hopfield CAMHopfield CAM

flag = 0; % Initialize flag

while flag ˜= n
permindex = randperm(n);% Randomize order
old_signal_vector = signal_vector;

for j = 1:n % update all neurons once per epoch
act_vec = signal_vector * zd_wt_mat;
if act_vec(permindex(j)) > 0
signal_vector(permindex(j)) = 1;

elseif act_vec(permindex(j)) < 0
signal_vector(permindex(j)) = -1;

end
end

flag = signal_vector*old_signal_vector;
end

disp(’The recalled vector is ’)
0.5*(signal_vector + 1)

mem_vectors = [
1 1 0 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0];
q = size(mem_vectors,1);% number of vectors
n = size(mem_vectors,2);% dim of the vectors
bip_mem_vecs = 2*(mem_vectors) - 1; % 

Convert 

% Initialize and compute the weight matrix
zd_wt_mat = zeros(n,n);
for i=1:q
zd_wt_mat = zd_wt_mat +    

bip_mem_vecs(i,:)’*bip_mem_vecs(i,:);
end
zd_wt_mat = zd_wt_mat - q*eye(n);% Zero diag

probe = input(’Enter the probe vector: ’);
signal_vector = 2*probe-1; 



Example 1Example 1
Encode, recall, analyze stability

110, 001



Example 1Example 1
Network architecture

1 2 3

-2

-2

-2

-2

2

2



Basins of AttractionBasins of Attraction
Basin of attraction of 110

011 101 110

100010001

000

111

Basin of attraction of 001



Multiple EncodingMultiple Encoding
When taking outer 
products note that 
Xk Xk

T = (-Xk)(-Xk
T) = 

Xk
c (Xk

c)T

In our example 100 
and 011 are 
complements!

Leads to multiple 
encoding



Example 2: Limit CyclesExample 2: Limit Cycles
Now encode 110, 000



Example 2Example 2
Network architecture

2

1 2 32



Basins of AttractionBasins of Attraction

111 Spurious attractor

2-step limit cycle

011 101 110

2-step limit cycle

010 100001Spurious attractor

000



Recall of Memories in Continuous Recall of Memories in Continuous 
TimeTime

Encode (1,1) (-1,-1)

Write down the additive 
dynamics equations (no 
inputs)

Integrate 4th order 
Runge Kutta Technique



Recall of Memories in Continuous Recall of Memories in Continuous 
TimeTime



Spurious AttractorsSpurious Attractors
Undesired attractors are called spurious 
attractors

Complement states
Mixture states
Spin glass states
Alien attractors



Error Correction with Bipolar Error Correction with Bipolar 
EncodingEncoding

Bipolar outer product encoding builds an  
error correction capability into the 
decoding process

Assume a weight matrix W encoding Q 
vectors, and a probe equal to one of the 
encoded vectors
Perform a signal noise decomposition…



SignalSignal--Noise DecompositionNoise Decomposition



Correction CoefficientCorrection Coefficient
Note the correction coefficient

cik = Xi
T Xk = n – 2 hik



Important ObservationsImportant Observations
If Xk has greater than half of its bits 
different from Xi, Xk

c will have less than 
half of its bits different from Xi
In the limiting case if Xk has all n bits 
different from Xi, Xk = Xi

c, -Xk=-Xi
c=Xi

If Xk has half of its bits different from 
Xi, -Xk also has half its bits different 
from Xi



Operational ImplicationsOperational Implications
For vectors in the noise term whose 
Hamming distance is greater than n/2
from the memory it is more beneficial to 
first negate and then add them to the 
signal term since negation brings them 
closer to the signal vector
Not if Hamming distance of the noise 
vector is less than n/2



Correction Coefficient Correction Coefficient vsvs
Hamming DistanceHamming Distance

n/2

Cik Vectors at distance 
n/2 are removed 
from the sumn

Vectors at distance n are 
negated and added after 
amplifying n times

-n

0
hikn

Vectors at distance 0 are  
added after amplifying n 
times



Error Performance of Hopfield Error Performance of Hopfield 
NetworksNetworks

In using outer product 
encoding the ji
component of the weight 
matrix can be expressed 
as

The activation of the ith

neuron in response to 
presentation of probe Xp
is as follows:

signal noise



SignalSignal––Noise RatioNoise Ratio
Assumption: Encoded vectors were 
generated by a sequence of Bernoulli 
trials

The noise term is asymptotically Gaussian 
distributed. Gaussian distribution has a 
mean of zero and a variance n(Q-1)
The signal variance is n2 and its mean is 0



Probability of Correct RecallProbability of Correct Recall
The probability for correct recall for one bit 
can be shown to take the form

Stability of most of the fundamental 
memories, requires the minimum signal–noise 
ratio satisfies the condition

See text for algebra.



Application: Pattern CompletionApplication: Pattern Completion
Consider three 12×12 pixel based images



Application: Pattern CompletionApplication: Pattern Completion

Contd.



Application: Pattern CompletionApplication: Pattern Completion

Contd.



Application: Pattern CompletionApplication: Pattern Completion



BrainBrain--StateState--inin--aa--Box (BSB) Neural Box (BSB) Neural 
NetworkNetwork

Predecessor of the Hopfield network
Extends the linear associator
Similar to the Hopfield network

autoassociative model
connection matrix computed using outer products

Operation of both models is also very similar
Differences arising primarily

In the way activations are computed in each iteration
Signal function

BSB stands apart from other models in its use of the 
linear-threshold signal function.



Operational DetailsOperational Details
Activation Function

Signal Function

Weight Matrix

Arranged so that Ai is an eigenvector of W with 
eigenvalue λi



Operational Details: Signal FunctionOperational Details: Signal Function
Piecewise linear 
signal function.
States are boxed 
into the hypercube: 
brain-state-in-a-
box!

-1

10

1

-1 xi
k

si
k



Operational Summary of the BSB Operational Summary of the BSB 
ModelModel



Rework Signal Update EquationRework Signal Update Equation
Neuron-specific 
scalar form of the 
BSB vector update 
equation with γ = 1
and δ = 0

BSB is a special case 
of Cohen–Grossberg
dynamics (see text)

Kronecker delta



SignalSignal--Sum Exchange (Sum Exchange (GrossbergGrossberg))
Rewrite the discrete 
equation in continuous 
form
Transform variables
Re-write the equation in 
transformed space: 
Additive Dynamics

Lyapunov Function



BSB Network TrajectoriesBSB Network Trajectories
Encode
A1 = (1,-1), A2 = (1,1)

Eigenvectors
λ1 = 0.04  λ2=0.03

Choose
γ = α = 1, δ = 0



MATLAB Code for BSBMATLAB Code for BSB
y = -1;
inc = 0.1;
while(x <=1)
while(y <= 1);
s(:,1) = [x y]’;
for i = 2:150
act = gamma*s(:,i-1)’+alpha*s(:,i-1)’*W + delta*s(:,1)’;
for j=1:2
if ( act(j) <= lim_l) s(j,i) = lim_l;
elseif (act(j) >= lim_u) s(j,i) = lim_u;
else s(j,i) = act(j);
end
end
end
...
...%Line plotting code goes here
...
y = y + inc;
end
y = -1;
x = x + inc;
end

delta = 0;
gamma = 1;
alpha = 1;
lim_u = 1;
lim_l = -1;
lambda1 = 0.04;
lambda2 = 0.03;
%Specify vectors to encode
x1 = [1 -1]’;
x2 = [1 1]’;
%Normalize them
x1_n = x1/sqrt(2);
x2_n = x2/sqrt(2);
%Encode them
W = lambda1*x1_n * x1_n’ + lambda2*x2_n * 

x2_n’;
figure(1);
hold on;
grid on;
%Start at an initial point of (-1,-1) and go to (1,1)
%in steps pf 0.1
x = -1;



BSB ApplicationsBSB Applications
Speech perception and probability 
learning
Multistable perception
Cognitive computation 
Radar signal categorization



Design of High Dimensional and Design of High Dimensional and 
Complex Pattern ClassifiersComplex Pattern Classifiers

Analytical methods or techniques that use local 
derivatives for gradient descent turn out to be 
inadequate
Error surfaces of non-linear systems in high 
dimensional spaces have multiple minima, and 
finding the true global minimum is indeed a 
difficult task
Exhaustive search in solution space to find a 
good set of parameters is almost impossible
Increasing complexity of the problem is 
accompanied by less training data and less prior 
knowledge



Simulated AnnealingSimulated Annealing
Provides a general framework for the 
optimization of the behaviour of complex 
systems
Operates by introducing noise in a 
controllable fashion into the operational 
dynamics of the system
Robust iterative search



Configuration, Temperature, Ground Configuration, Temperature, Ground 
StateState

A specific combination of neuron states is a 
configuration of the network

In an n node network there are 2n configurations
Basic Idea:

Generate different configurations of the system at 
various values of a control parameter called the 
temperature
Gradually reduce the value of this parameter to 
search for an optimal or ground state solution to the 
problem



An Important Result from An Important Result from 
Statistical MechanicsStatistical Mechanics

Low energy configurations are very few:
Corresponding to the vectors that are encoded into 
the network and other spurious memories

Many more possible configurations that 
correspond to higher energies
From statistical mechanics: 

A system is in thermal equilibrium when a 
configuration γ with energy Eγ occurs with 
probability

Boltzmann Probability Distribution
Partition Function



Simulated Annealing ProcedureSimulated Annealing Procedure
Randomize neuron states once in the beginning, 
and initialize the temperature to a high value.
Choose a neuron I randomly from the network
Compute the energy EA of the present 
configuration A
Flip the state of neuron I to generate a new 
configuration B
Compute energy EB of configuration B

Contd.



Simulated Annealing ProcedureSimulated Annealing Procedure
If EB < EA accept configuration B
Else accept configuration B with probability 
exp(-∆E/T), ∆E = EB – EA

Continue selecting and testing neurons 
randomly, and set their states several times in 
this way until a thermal equilibrium is reached.
Finally, lower the temperature and repeat the 
procedure.



NotesNotes
At high temperatures

all configurations are somewhat equally likely. 
transitions to energetically unfavourable states are 
frequent

At lower temperatures
transitions to energetically unfavourable states 
become less frequent
search becomes more like the usual descent 
procedures

If the cooling is sufficiently slow, the network has 
a very high probability of finding itself in an 
optimal configuration that represents a minimum 
energy configuration



NotesNotes
Critical aspect:

Choice of initial temperature
Annealing schedule Tk+1 = cTk

Typical working range : 0.8-0.9



Stochastic Simulated Annealing Stochastic Simulated Annealing 
Algorithm: Algorithm: Hopfield NetworkHopfield Network

Contd.



Stochastic Simulated Annealing Stochastic Simulated Annealing 
AlgorithmAlgorithm



ExampleExample
Consider a Hopfield network encoding 
vectors A1 = (110001) A2 = (101010)



Hopfield Net SA: Simulation ResultHopfield Net SA: Simulation Result



Hopfield Net SA: Simulation ResultHopfield Net SA: Simulation Result



BoltzmannBoltzmann MachineMachine
Extension of the discrete Hopfield network
Replaces the deterministic local search 
dynamics by randomized local search 
dynamics.
Introduces a powerful stochastic learning 
algorithm in place of the simple Hebbian
rule 
Relaxation is done using the simulated 
annealing procedure



BoltzmannBoltzmann Machine: ArchitectureMachine: Architecture

Output layerHidden layer

Bidirectional
connections

(a) Completion network (b) Classification network

Hidden layer

Input layer
Input-output

layer



Hopfield Network Hopfield Network vsvs BoltzmannBoltzmann
MachinesMachines

Similarities
Neuron states are bipolar
Weights are symmetric
Neurons are selected at 
random for asynchronous 
update
There is no self-feedback

Differences (Contd.)
Learning

Hopfield network vectors 
are encoded into the 
system using outer 
product correlation 
encoding and there is no 
separate learning phase
Boltzmann machines 
learning is based on 
simulated annealing and 
gradient descent

Differences
Architecture

Boltzmann machine uses a 
hidden layer

Neuron update
Hopfield network is 
deterministic
Boltzmann networks is 
stochastic



Operational DetailsOperational Details
Consider a Boltzmann completion network with 
configurations described by an energy function

Glauber Dynamics: for the Ith neuron,



BoltzmannBoltzmann Machine Relaxation Machine Relaxation 
Procedure: Operational SummaryProcedure: Operational Summary

Contd.



BoltzmannBoltzmann Machine Relaxation Machine Relaxation 
Procedure: Operational SummaryProcedure: Operational Summary



Learning Objective in the Learning Objective in the BoltzmannBoltzmann
MachineMachine

Find a set of weights such that at any 
given temperature, the actual 
distribution P(α) matches the desired 
distribution Q(α) as closely as possible.
Use standard gradient descent with a 
relative entropy error function:
Kullback-Leibler Distance



Final Weight Update ExpressionFinal Weight Update Expression
Define

Weight change dictated by

Learning component Unlearning component

See text for algebra.



MATLAB Code to Implement MATLAB Code to Implement 
BoltzmannBoltzmann Learning AlgorithmLearning Algorithm

clamped_signals = [repmat(Ab, [rep_num/Q 1]) 
clamped_h_signals];

Xc = clamped_signals * W;
pc = 1./(1 + exp(-Xc./T)); % compute the flip probabilities
randc = rand(rep_num, 3); % generate random #s in (0,1)
for i=1:rep_num
j = round(1+2*rand);
if (randc(i,j) < pc(i,j))
clamped_signals(i,j) = 1;
else clamped_signals(i,j) = -1;
end
end
clamped_h_signals = clamped_signals(:,3:4);
end
T = T*c
end
clamped_signals = [repmat(Ab, [rep_num 1]) 

clamped_h_signals];
%Collect stats and change weights
Expc = (1/rep_num)*clamped_signals’ * clamped_signals
Expf = (1/rep_num)*free_signals’* free_signals
deltaW = Expc(:,1:3) - Expf(:,1:3);
W = W + (eta/T) * deltaW.* [(1-eye(3)); ones(1,3)]
end

for k = 1:10
rand(’state’,sum(100*clock));
free_signals = [(2*round(rand(rep_num, 3)) - 1)...
-ones(rep_num,1) ];
clamped_h_signals = [(2*round(rand(rep_num,1)) -

1)...
-ones(rep_num,1) ];
T = 10;
while (T > 1)
for relax = 1:num_cycles
rand(’state’,sum(100*clock));
Xf = free_signals * W; % compute activations
pf = 1./(1 + exp(-Xf./T));% compute the flip 

probabilities
randf = rand(rep_num, 3); % generate random #s in 

(0,1)
for i = 1:rep_num % work down network instances
j = round(1+2*rand);
if (randf(i,j) < pf(i,j))
free_signals(i,j) = 1;
else free_signals(i,j) = -1;
end
end
rand(’state’,sum(100*clock));



Simulation ResultSimulation Result



Bidirectional Associative MemoryBidirectional Associative Memory
Two field attractor neural network 
introduced by Kosko
Continuous BAMs employ additive 
dynamics
Heteroassociative in nature



BAM ArchitectureBAM Architecture

FX FY

WT

W

A B

m neuronsn neurons



Relaxation ProcedureRelaxation Procedure
Through a sequence 
of forward and 
reverse 
transmissions
A bidirectional 
relaxation process
Eventually leading to 
a bidirectional 
equilibrium



Signal Update: Forward PassSignal Update: Forward Pass
Compute activations of FY neurons

Generate bipolar signals on FY neurons



Signal Update: Reverse PassSignal Update: Reverse Pass
Compute activations of FX neurons

Generate bipolar signals on FX neurons



Encoding Associations into a BAM Encoding Associations into a BAM 
SystemSystem

Use bipolar outer product encoding
Programming each hetero-association
Hebbian Law embedded
Given T = {Xk, Yk}, Xk ∈ℜn Yk ∈ℜm

These are bipolar



Operational Summary of BAM Operational Summary of BAM 
AlgorithmAlgorithm

Contd.



Operational Summary of BAM Operational Summary of BAM 
AlgorithmAlgorithm



MATLAB Code to Implement MATLAB Code to Implement 
BAM AlgorithmBAM Algorithm

for i = 1 : p % Set up signals
if act_y(i) > 0 signal_y(i) = 1;
elseif act_y(i) < 0 signal_y(i) = -1;
end
end
if (k > 1) % Compare for stability if iteration > 1
compare_y = isequal(signal_y, pattern_y(k-1,:));
else compare_y = 0;
end
pattern_y(k,:) = signal_y; % Store the signal on Fy
act_x = signal_y * wt_matrix’;% Compute activations of Fx
for i = 1 : n % Set up signals
if act_x(i) > 0 signal_x(i) = 1;
elseif act_x(i) < 0 signal_x(i) = -1;
end
end
k = k + 1; % Increment time
compare_x = isequal(signal_x, pattern_x(k-1,:)); % Compare
pattern_x(k,:) = signal_x; % and store the signal on Fx
flag = compare_x*compare_y; % Check for bidirectional 

eqlm.
end
pattern_x % Display update traces
pattern_y

n = 5; % Dimension of Fx
p = 4; % Dimension of Fy
q = 2; % Number of associations
mem_vectorsx = [0 1 0 1 0; 1 1 0 0 0]; %Specify Fx

vectors
mem_vectorsy = [1 0 0 1; 0 1 0 1]; %Specify Fy

vectors
bip_mem_vecsx = 2*mem_vectorsx-1; %Convert to 

bipolar
bip_mem_vecsy = 2*mem_vectorsy-1;
wt_matrix = zeros(n,p); %Initialize weight matrix
for i=1:q %and recursively compute
wt_matrix = wt_matrix + 

bip_mem_vecsx(i,:)’*bip_mem_vecsy(i,:);
end
k = 1; % Set up time index
probe = [0 1 0 1 1]; % Set up probe
signal_x = 2*probe - 1; % Set Fx signals to probe
signal_y = randomize(1,p); % Randomize Fy signals
pattern_x(k,:) = signal_x; % store the pattern on Fx
pattern_y(k,:) = signal_y; % store the pattern on Fy
flag = 0; % Indicates bidirectional eqlm.
while flag ˜=1
act_y = signal_x * wt_matrix; % Computer Fx

activations



HandworkedHandworked ExampleExample
Encode the associations

A1 = (0 1 0 1 0)T B1 = (1 0 0 1)T

A2 = (1 1 0 0 0)T B2 = (0 1 0 1)T



HandworkedHandworked ExampleExample
Final weight matrix

Weight matrix 
transpose



HandworkedHandworked ExampleExample
Check bidirectional stability for first 
association

X1
TW = (4 -4 -6 6) → (1 -1 -1 1) = Y1

T

Y1
TWT = (-4 4 -4 4 -4) → (-1 1 -1 1 -1) = X1

T

E(X1,Y1) = - X1
TWY1 = -20 = - Y1

TWTX1

Verify for the second…



Accuracy of Recall Based on Accuracy of Recall Based on 
Hamming DistanceHamming Distance

Probe vector X’ = (-1 1 1 1 -1)T at a Hamming 
distance of 1 from X1

Then: (X’)TW = (4 -4 -2 2) → (1 -1 -1 1) = Y1
T

X1,Y1 association recalled

Probe vector X’’ = (-1 -1 1 1 -1)T at a Hamming 
distance of 2 from X1 and 1 from X1

c

Then: (X’’)TW = (4 -4 2 -2) → (1 -1 1 -1) = (Y1
c)T

X1
c,Y1

c association recalled



BAM Stability AnalysisBAM Stability Analysis
Is there a guarantee that the system 
will always fall to a stable attractor?

Energy function:
Kosko suggests using an energy function 
which is the average of the of the forward 
and reverse signal energies:

E(A,B) = -ATWB



BAM Stability TheoremBAM Stability Theorem
Any real connection matrix W defines a 
BAM system that is bidirectionally
stable.

See text for proof.



Error Correction in Error Correction in BAMsBAMs
As powerful as that of Hopfield 
networks
Comes with a fundamental assumption:

Function continuity: H(Ai, Aj)/n ≈ H(Bi, Bj)/m

Coefficient cik is computed from domain space inner 
product but applied to range space inner product.

Therefore continuity must hold.



Correction CoefficientsCorrection Coefficients
With the continuity assumption in place, 
the correction coefficients cik correct 
the noise terms in a way that is identical 
to the correction explained earlier in the 
context of Hopfield networks:



Memory Annihilation of Structured Memory Annihilation of Structured 
Maps in Maps in BAMsBAMs

An important pathological case
Under certain mild conditions, the 
memory of all associations is lost

Memory of encoded associations between 
sets of equidistant vectors (called 
structured maps) annihilates when the 
number of such associations exceeds a lower 
bound.
See text for details.



Continuous Continuous BAMsBAMs
Discrete time treatment carries over to the 
continuous time case
Assume that neuron signal functions are 
sigmoidal
Each layer of neurons is governed by an 
additive dynamics system of equations:



Energy FunctionEnergy Function
For continuous BAMs the energy 
function takes the form:

Time derivative of this function is 
negative: proves stability



Adaptive Adaptive BAMsBAMs
Employ Signal Hebbian Learning
Hebb’s observations translate to the 
following rules:

The synaptic efficacy between two 
simultaneously active neurons is selectively 
increased
The synaptic efficacy between two 
asynchronously active neurons is selectively 
decreased



Signal Signal HebbHebb LawLaw

i j
Sj(xj)Si(xi)

wij

Signal product dictates weight change

Solution



HebbHebb Learning Generates Outer Learning Generates Outer 
Products in the LimitProducts in the Limit

Consider si = sj = 1, or si = sj = -1
Then

Or wij(t) → 1 as t → ∞
Similarly if si = 1, sj = -1, or si = -1 sj = 1 then wij(t) → -1 as 
t → ∞
This clearly shows that the asymptotic encoding of a signal 
Hebb Law generates a component weight wij which is none 
other than the signal product sisj, or the outer product 
generates



Adaptive BAM EquationsAdaptive BAM Equations
Additive activation dynamics with Signal 
Hebb learning embedded



Energy FunctionEnergy Function
Adaptive BAMs governed by the energy 
function

Easy to show that the time derivative is 
negative, and adaptive BAMs settle down 
into a stable configuration

Adaptive resonance



BAM Simulation ExampleBAM Simulation Example
Encode the pixel 
image associations as 
shown alongside
Input image defined 
on 12×12 grid
Output image 
defined on 12×10 
grid



SimulationSimulation
Presentation of a 40% distorted plane



SimulationSimulation
Final association recalled


