Chapter 11

Adaptive Resonance Theory

Neural Networks: A Classroom Approach Satish Kumar Department of Physics & Computer Science Dayalbagh Educational Institute (Deemed University)

> Copyright © 2004 Tata McGraw Hill Publishing Co.

Competition and Cooperation

- Ubiquitous in the real world
- Ensemble based neuronal cooperation and competition
 - Neurons race to enhance their activation.
- Neurons within an ensemble compete with one another to maximize their activation.
- Complex feedback paths within and between such ensembles
- Quickly lead to very complicated dynamics.
- Primary aim:
 - Constrain the network architecture and neuron signal functions sufficiently enough to extract useful functionality from the system

Noise vs Saturation

□ Noise:

- Operating levels of neuronal signals are very small
- Small signals can be easily lost as noise

□ Saturation:

- All neurons have finite operating levels
 - Strong signals can cause neurons to saturate, leading effectively to a loss of information

Noise-Saturation Dilemma

- If the activities of neurons are sensitive to small inputs, how does one avoid having them saturate for large inputs?
- If the activities are sensitive to large inputs, how does one avoid small inputs getting lost as noise?

An Interpretation of Activation

2

- Each node comprises a population of B excitable cells
- Measure of the activity of a node is the number of cells that are firing at any point of time
- Range of neuron activation is 0 to B

The layer **F** comprises **n** nodes which can receive an external input **I**

F

n

Functional Unit is a Spatial Pattern: Noise vs Saturation

Shunting Net: No Interactions

$$\dot{x}_i = -Ax_i + (B - x_i)I_i$$

Shunting Network with no Interactions

- □ Assume a spatial pattern ■ $\theta = (\theta_1, \dots, \theta_n)^T$ □ where $\theta_i = I_i / \tilde{I}$
- 🗆 In equilibrium

$$\hat{x}_i = \frac{BI_i}{A + I_i} = \frac{B \ \theta_i \ \tilde{I}}{A + \theta_i \ \tilde{I}} = \frac{B}{(\frac{A}{\theta_i \tilde{I}}) + 1}$$
$$\rightarrow B \ \text{as} \ \tilde{I} \rightarrow \infty$$

Shunting Network with no Interactions

As the input intensity increases, activities saturate in a shunting network with no interactions

Shunting Networks with Lateral Interactions

Preserve the sensitivity of the network to θ_i even as the total input intensity increases

On-Center Off-Surround Network

Introducing lateral interactions of external inputs to the shunting network can help solve the noise-saturation dilemma

Multiplicative or Shunting Interactions

Introduce a *multiplicative* or *shunting* <u>feedback term</u>

Shunting Nets Don't Saturate!

Steady state analysis reveals

$$\hat{x}_{i} = \frac{B\tilde{I}}{A+\tilde{I}} \theta_{i} = \frac{B\theta_{i}}{(\frac{A}{\tilde{I}})+1}$$
$$\rightarrow B\theta_{i} \text{ as } \tilde{I} \rightarrow \infty$$

- System activities no longer saturate as the input intensity increases
- Pattern information is preserved for an infinite operating range!
- Simple competitive feedback solves the noisesaturation dilemma.

Automatic Gain Control

- □ Factor x_i which multiplies ΣI_j is an automatic gain control
 - Large activity values: x_i increases towards B and the effective inhibitory feedback increases which tends to restore the activity towards the zero state resting level
 - Low activity values: inhibition becomes small allowing the dynamics to be governed to a large extent by the excitation
 - Automatic gain control helps to maintain the system's sensitivity to pattern information at varying levels of input intensity

Simple Shunting Networks: Shift Invariance

- System maintains its sensitivity for different x̂i
 off-surrounds
- A larger off-surround requires a larger oncenter at which the system demonstrates that sensitivity
- System automatically adapts its range of sensitivity depending on the value of the present off-surround level

$$= \frac{BI_i}{A + \tilde{I}} = \frac{BI_i}{A + I_i + \sum_{j \neq i} I_j}$$
$$K = \ln I_i$$

$$\hat{x}_i(K, J) = \frac{Be^K}{A + e^K + J}$$

 $J = \sum I_j$

Simple Shunting Networks: Shift Invariance

function of the net off-surround

Simple Shunting Networks: Shift Invariance

Make the shunting model more biological

- Activity levels go negative as they do in vivo
- Range from [0,B] to [-C,B]

$$\dot{x}_i = -Ax_i + (B - x_i)I_i - (x_i + C)\sum_{j \neq i} I_j$$

$$1 \quad 2 \quad \dots \quad n \quad F \quad \int_{X_i} B \quad 0$$

$$\chi_i = -C$$

Simple Shunting Networks: Noise Suppression

- \Box In steady state \longrightarrow
- C/(C+B) is called the adaptation level
- A threshold that θ_i must exceed in order to produce a positive activity level
- Such a network can suppress noise: zero spatial frequency patterns

$$\hat{x}_i = \frac{(B+C)\tilde{I}}{A+\tilde{I}} \left[\theta_i - \frac{C}{B+C}\right]$$

Simple Shunting Networks: Noise Suppression

Suppose the ratio of C/B matches the ratio of nodes excited by I_i to those inhibited by I_i

In other words, we set C/B = 1/(n-1) or C/(C+B) = 1/n

$$\hat{x}_{i} = \frac{(B+C)\tilde{I}}{A+\tilde{I}} \left[\theta_{i} - \frac{1}{n}\right]$$

Shunting networks with a hyperpolarizing term suppress noise

Noise Suppression Facilitates Pattern Matching

When two spatial patterns impinge simultaneously on an on-center-offsurround network, the network computes the extent to which they match.

$$\hat{x}_i = \frac{(B+C)(1+\alpha)\tilde{I}}{A+(1+\alpha)\tilde{I}}\left(\theta_i - \frac{C}{B+C}\right)$$

Noise Suppression Facilitates Pattern Matching

Recurrent On-Center—Off-Surround Networks

Include inhibitory and excitatory intrafield signal feedback

Generalized On-Center Off-Surround Systems

- The noise suppression property when generalized to systems that have distance dependent interactions
- Endows them with the capability to detect edges in a spatial input
- Connectivity in networks with distance dependent interactions is usually governed by kernel functions such as the Gaussian function
- Also form the basis of Mexican hat networks we study in Chapter 12

Shunting Model has Cohen-Grossberg Dynamics

Consider, the general class of on-centeroff-surround shunting models

$$\dot{x}_i = -A_i x_i + (B_i - x_i) \left[I_i + S(x_i) \right] - (x_i + C_i) J_i + \sum_{j=1}^n w_{ji} S(x_j)$$

 $\Box \text{ Set } y_i = x_i + C_i$

$$\dot{y}_i = a_i(y_i) \left(b_i(y_i) - \sum_{j=1}^n c_{ji} d_j(y_j) \right)$$

Shunting Model has Cohen-Grossberg Dynamics

With the substitutions:

$$a_{i}(y_{i}) = y_{i}$$

$$b_{i}(y_{i}) = \frac{1}{y_{i}} \{ A_{i}C_{i} - (A_{i} + J_{i})y_{i} + (B_{i} + C_{i} - y_{i}) [I_{i} + S(y_{i} - C_{i})] \}$$

$$c_{ji} = w_{ji}$$

$$d_{j}(y_{j}) = S(y_{j} - C_{j})$$

Transformation to Pattern Variable Form

See algebra in text

Pattern variable ———

$$\overline{X}_i = \frac{x_i}{\sum_j x_j} = \frac{x_i}{X}$$

$$\overline{\underline{X}}_i = B \overline{\underline{X}}_i \sum_k \overline{\underline{X}}_k (g_i - g_k)$$

Signal to activation ratio

Case 1: Linear Signal Function

Stores patterns, amplifies noise

Case 3: Fasterthan-linear Signal Function

 Quenches noise, and exhibits winnertake-all behaviour.

Case 4: Combining the Three Cases: Sigmoidal Signal Function

Combining the three cases: faster-thanlinear, linear, slower than-linear, quenches noise and enhances the signal.

Building Blocks of Adaptive Resonance

- Study specialized architectures of neuronal systems that integrate both short-term memory and long-term memory dynamics
- Perform powerful functions of storing, recalling and recognizing *spatial* patterns of neuronal activity
- Simple building blocks when put together in a systematic way, result in the adaptive resonance architecture
- Two models required are
 - outstars

instars

Outstar: Architecture

Total activity equations

$$\frac{\overline{X}_{i}}{\overline{X}_{i}} = C(W_{i} - \overline{X}_{i}) + D(\theta_{i} - \overline{X}_{i})$$
LTM values read
into STM activities spatial pattern
read into STM

$$\dot{W}_{i} = E(\overline{X}_{i} - W_{i})$$
STM downloads
into LTM

Outstar: Analysis

- In the absence of the command neuron signal, s_c = 0
 - External inputs set up neuronal activities quickly to extract pattern space information
 - No learning can take place unless the command neuron switches on.
- □ In the absence of any input when $\theta_i = 0$
 - LTMs are read out into STMs when external inputs are absent and the command neuron switches on

$$\frac{\overline{X}_i}{\overline{X}_i} = D(\theta_i - \overline{X}_i)$$
$$\dot{W}_i = 0$$

$$\frac{\overline{X}_i}{\overline{X}_i} = C(W_i - \overline{X}_i) \longleftarrow \text{Fast}$$
$$\dot{W}_i = E(\overline{X}_i - W_i) \longleftarrow \text{Slow}$$

Instar: Architecture

Instar: Analysis

 \Box In the steady state,

$$x_i(\infty) = \frac{\tilde{I}}{a} \theta_i$$
 $i = 1, \dots, n$

□ Assume for analysis that s_i = Kθ_i
 □ Therefore

$$\dot{w}_i = -bw_i + K\theta_i y \qquad i = 1, \dots, n$$

$$\dot{W}_i = G(\theta_i - W_i)$$
Instar: Analysis

- Pattern information is downloaded into LTMs
- Learning is "gated" by the postsynaptic neuron activation y

$$\dot{W}_i = G(\theta_i - W_i)$$

$$\dot{y} = -ay + \sum_{i=1}^{n} w_i s_i = -ay + K \sum_{i=1}^{n} w_i \theta_i$$

Ky/W

$$y(\infty) = \frac{K}{a} \sum_{i=1}^{n} w_i \theta_i$$

Instar: Analysis

Special Case: Learning has Signal Hebbian Form

$$\dot{w}_i = -bw_i + s_i s = -bw_i + K\theta_i s$$

The form of the signal s is binary threshold

$$\dot{W}_i = \frac{Ks}{W} \left(\theta_i - W_i \right)$$

 \Box Learning takes place only if s = 1

Fundamental Questions

- "How do internal representations of the environment develop through experience?"
 - How is there a consistency between such internal models?
 - How do errors in internal codes get corrected?
 - How does the system adapt to a constantly changing environment?

Helmholtz Doctrine of Perception

- Internal cognitive factors dramatically influence our perception of the environment
 - When external sensory data impinges on a system, it sets up an internal feedback process
 - This elicits a feedback expectancy or learned prototype
 - This modifies the external sensory data patterns recorded.
 - It is only when there is a consensus or "resonance" between an impinging pattern and a learnt feedback expectancy prototype that true perception takes place

Substrate of Resonance (1)

Substrate of Resonance (2)

A bottom-up input elicits a learned feedback expectancy in the form of a top-down response.

Superimposition of patterns in F_1 can then either lead to pattern reinforcement or suppression

Substrate of Resonance (3)

- Pattern matching represents a resonance between the input and what is expected to be seen as input
- □ This cycle of resonance should persist between layers F_1 and F_2 as long as the input is held active.
- Pattern mismatch represents a condition of dissonance
 - Signals a coding error
 - Pattern of uniform/near uniform activities should be suppressed along with the elicited pattern X
 - Paves the way for the external input to elicit another expectancy pattern across F₂ which might match the present input to a greater extent

Structural Details of the Resonance Model

- Bottom-up inputs filter from F₁ to F₂ through instar weights
- Learned feedback expectancy elicited from F₂ is fed back to F₁ through an outstar

Structural Details of the Resonance Model: Attentional Vigilance

- An external *reset* node that samples the net activity of the input pattern and the activity of the pattern that develops across F₁ after top-down feedback is superimposed
- Attentional vigilance Facilitates long-term suppression of the F₂ node that fires in case of an error

Search Cycle using Attentional Vigilance

- \Box If the feedback reinforces the spatial pattern across F_1
 - Activity levels of F₁ nodes are amplified
 - Increases the inhibition to A further
 - increasingly difficult for A to fire
- \square If the feedback pattern mismatches the pattern presently set up across F_1
 - Leads to a suppression of activities of F₁ nodes.
 - Decreases the net inhibition to A
 - Results in the net activation of node A going above the threshold.
 - Causes A to fire
 - When A fires, its signal provides long lasting inhibition to the currently firing node of F₂
 - This suppresses the feedback
 - Causes the original spatial pattern that elicited the feedback to be reinstated across F₁
 - The competitive processes in F₂ select a new winner which elicits a new feedback and a new search cycle is initiated.

Adaptive Resonance Theory 1 (ART 1)

- □ ART 1 is a binary classification model.
- Various other versions of the model have evolved from ART 1
- Pointers to these can be found in the bibliographic remarks
- The main network comprises the layers F₁, F₂ and the attentional gain control as the attentional subsystem
- The attentional vigilance node forms the orienting subsystem

ART 1: Architecture

ART 1: STM Dynamics

- neuronal activations are confined to intervals
 - $\begin{bmatrix} -B_1/C_1, 1/A_1 \end{bmatrix} \\ \begin{bmatrix} -B_2/C_2, 1/A_2 \end{bmatrix}$

$$\epsilon \dot{x}_i = -x_i + (1 - A_1 x_i) J_i^+ - (B_1 + C_1 x_i) J_i^- \qquad i = 1, \dots, n$$

$$\epsilon \dot{y}_j = -y_j + (1 - A_2 y_j) J_j^+ - (B_2 + C_2 y_j) J_j^- \quad j = 1, \dots, m$$

For details see text

ART 1: Binary Switching Scenario

 \square F₂ behaves like a binary choice network

$$S_j(x_j) = \begin{cases} 1 & \text{if } U_j = \max \left\{ U_k \right\}_{k=1}^m \\ 0 & \text{otherwise} \end{cases}$$

In this binary switching scenario then,
 V_i = D₁ v_{Ji} where node J of F₂ is active
 Top down feedback vector V_J is a scaled version of the outstar weights that emanate from the only active node J :
 V_J = D₁(v_{J1},..., v_{Jn})^T

ART 1: 2/3 Rule

- The gain control signal s_G = 1 if I is presented and all neurons in F₂ are inactive
- \Box s_G is nonspecific
- When the input is initially presented to the system, s₆= 1
- □ As soon as a node J in $F_2 \longrightarrow s_i = I_i \land v_{J_i}$ fires as a result of competition, $s_G = 0$

$$\rightarrow$$
 $s_i = I_i \land s_G = I_i \land 1 = I_i$

Long-term Memory Dynamics

□ Bottom-up connections,

$$\dot{w}_{ij} = K_1 \, \mathbb{S}_j(y_j) \bigg(-E_{ij} w_{ij} + \mathbb{S}_i(x_i) \bigg)$$

□ Top-down connections,

$$\dot{v}_{ji} = K_2 \, \mathbb{S}_j(y_j) \bigg(-E_{ji} v_{ji} + \mathbb{S}_i(x_i) \bigg)$$

Weber Law Rule

Basic idea

Values of weights learnt during presentation of a pattern A with a smaller number of active nodes should be larger than weights learnt during presentation of another pattern B with a larger number of active nodes

□ Mathematically

As instar learning proceeds, the connection strength between active F₁ and F₂ nodes asymptotically approaches a value

$$w_{ij}(\infty) = \frac{\alpha}{\beta + |I|}$$

Weber Law Rule: Encoding Instars

Design of LTM Coefficient for Weber Law Rule

D Return to the LTM dynamics equation: $\dot{w}_{ij} = K_1 S_j(y_j) \left(-E_{ij} w_{ij} + S_i(x_i) \right)$

Choose
$$E_{ij} = S_i(x_i) + \frac{1}{L} \sum_{k \neq i} S_k(x_k)$$
 $K_1 = KL$

$$\Box \quad \text{Then,} \quad \dot{w}_{ij} = K \mathbb{S}_j(y_j) \left((1 - w_{ij}) L \mathbb{S}_i(x_i) - w_{ij} \sum_{k \neq i} \mathbb{S}_k(x_k) \right)$$

 Straightforward to verify that this embodies Weber Law Form

Final LTM Equations

🗆 Instar

$$\dot{w}_{ij} = \begin{cases} K \big((1 - w_{ij})L - w_{ij}(|I| - 1) \big) \\ -K |I| w_{ij} \\ 0 \end{cases}$$

if nodes *i* and *j* are active if node *i* is inactive, node *j* is active if node *j* is inactive

🗆 Outstar

$$\dot{v}_{ji} = \begin{cases} -v_{ji} + 1 & \text{if nodes } i \text{ and } j \text{ are active} \\ -v_{ji} & \text{if node } i \text{ is inactive, node } j \text{ is active} \\ 0 & \text{if node } j \text{ is inactive} \end{cases}$$

Vigilance Parameter

- \Box When V_J impinges on F_1
 - the activity of the signal vector can either remain the same if V_J = I or
 - can decrease if V_J differs from I at some positions
- Degree of match measured by

$$M = \frac{|V_J \wedge I|}{|I|} = \frac{|\mathbb{S}(X)|}{|I|}$$

Set a threshold p, called the vigilance parameter which defines the degree of match necessary to admit pattern I to a class (or cluster) J

Resonance

 $M = \frac{|\mathbf{S}(\mathbf{X})|}{|\mathbf{I}|} \ge \rho$

Resonance occurs when an external input filters through to F₂ and causes a category node J to fire which in turn sends back an expectation that matches the input to a degree greater than the vigilance parameter.

The modified signal vector (after feedback) must subsequently cause the same F₂ node to fire in order for resonance to occur.

- The degree of match is acceptable
 - System goes into the resonant state
 - Admits the present input to category J
 - *Fast learning* takes place: learning is assumed to be immediate

$$w_{iJ} = \begin{cases} \frac{L}{L-1+|S(X)|} & \text{if } S_i(x_i) = 1\\ 0 & \text{if } S_i(x_i) = 0 \end{cases}$$

$$v_{Ji} = \begin{cases} 1 & \text{if } \mathbb{S}_i(x_i) = 1\\ 0 & \text{if } \mathbb{S}_i(x_i) = 0 \end{cases}$$

STM Reset

 $M < \rho$

- The degree of match is less than the minimum acceptable value as defined by ρ
- The system cannot admit the current input pattern I into presently firing category J of F₂
- Node A immediately fires an STM reset that provides a long lasting suppression of the presently active node of F₂
- This switches off the top-down outstar feedback and restores s_G and S(X) = I

Search

- □ Competition takes place between the remaining m 1 nodes
 - A new winner emerges
 - A new outstar readout takes place.
- □ The new feedback vector is compared with the input I
 - S(X) is possibly modified
- \square |S(X)|/|I| is recomputed and compared with ρ
 - If it is greater than ρ, then resonance
 - If it is less than p, then an STM reset fires again and suppresses this second node of F₂, and the search repeats
 - If all nodes are exhausted the ART system adds a new F_2 node and admits the current input directly.

ART 1: Operational Summary

Given	A set of <i>Q</i> binary patterns $\mathcal{T} = \{I_k\}_{k=1}^Q$ $I_k \in \mathbb{B}^n$ to be classified by an ART 1 system.
Assume	$ \rightarrow n $ nodes in F_1 ; <i>m</i> nodes in F_2 . $ \rightarrow $ Let \mathcal{J} define the set of indices of F_2 neurons that have not yet been reset in the current search cycle.
Initialize	$ \begin{array}{l} \bigoplus \text{Set up fields } F_1 \text{ and } F_2 \text{ with } n \text{ and } m \text{ neurons respectively.} \\ w_{ij} = \frac{2}{1+n} & \forall i, j \\ v_{ji} = 1 & \forall i, j \\ L = 2 \\ \text{Set up } \rho \text{ as specified.} \end{array} $

ART 1: Operational Summary

Iterate

()Repeat \rightsquigarrow Select a pattern I_k and set $\mathcal{J} = \{1, \ldots, m\}$. ⑦Repeat \rightsquigarrow Compute F_1 signals: Set $S(X) = I_k$. Since $\frac{|S(X)|}{|I_k|} = \frac{|I_k|}{|I_k|} = 1.0 > \rho$ no reset. \rightsquigarrow Compute F_2 activations and choose the winner: $u_j = \sum_{i=1}^n w_{ij} \mathcal{S}(x_i) \qquad \forall j \in \mathcal{J}$ Choose the winner index J such that $u_J = \max_{j \in \mathcal{J}} \{u_j\}.$ \rightsquigarrow Recompute F_1 signals in the presence of outstar feedback: $S(X) = V_J \wedge I_k$ where $V_J = (v_{J1}, \ldots, v_{Jn})$.

ART 1: Operational Summary

 \rightsquigarrow Check for reset: a. $M = |S(X)|/|I_k|$ b. If $M \rho$ do fast learning as specified in the next step. c. If $M \ge \rho$ then reset node $J : \mathcal{J} = \mathcal{J} \setminus \{J\}$ c1. If $\mathcal{J} \neq \phi$, repeat search cycle from inner loop. c2. Else add a new node to $F_2: m = m + 1; \ \mathcal{J} = \{m\}.$ Set the winner J = m and $V_J = I_k$. Set $w_{iJ} = \frac{2}{1+|I_k|}$ i = 1, ..., n. Break and take the next pattern. \rightsquigarrow Fast learning in winning instar/outstar $w_{iJ} = \frac{2}{1+|S(X)|}$ $i = 1, \dots, n$ $V_I = S(X)$ $\{$ (until I_k leads to resonance on a node.) {until each pattern $I_k \in \mathcal{T}$ directly leads to resonance.)

Hand-worked Example

- Cluster the vectors 11100, 11000, 00001, 00011
- Low vigilance: 0.3
- High vigilance: 0.7

Hand-worked Example: $\rho = 0.3$

k	I_k	W	U	J	V_J	$\mathbb{S}(X)$	M	$M > \rho$	Fast Learning	
1	11100	$\begin{pmatrix} .33 & .33 \\ .33 & .33 \\ .33 & .33 \\ .33 & .33 \\ .33 & .33 \\ .33 & .33 \end{pmatrix}$	(.99 .99)	1	11111	11100	1.0	Yes	$\mathbf{W} = \begin{pmatrix} .5 & .33 \\ .5 & .33 \\ .5 & .33 \\ 0 & .33 \\ 0 & .33 \end{pmatrix} \mathbf{V} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$	
2	11000	$\begin{pmatrix} .5 & .33 \\ .5 & .33 \\ .5 & .33 \\ 0 & .33 \\ 0 & .33 \end{pmatrix}$	(1.0 .66)	1	11100	11000	1.0	Yes	$\mathbf{W} = \begin{pmatrix} .66 & .33 \\ .66 & .33 \\ 0 & .33 \\ 0 & .33 \\ 0 & .33 \end{pmatrix} \mathbf{V} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$	
3	00001	$\begin{pmatrix} .66 & .33 \\ .66 & .33 \\ 0 & .33 \\ 0 & .33 \\ 0 & .33 \end{pmatrix}$	(0.33)	2	11111	00001	1.0	Yes	$\mathbf{W} = \begin{pmatrix} .66 & 0 \\ .66 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{V} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$	
4	00011	$\begin{pmatrix} .66 & 0 \\ .66 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$	(0 1)	2	00001	00001	0.5	Yes	$\mathbf{W} = \begin{pmatrix} .66 & 0 \\ .66 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{V} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$	

Hand-worked Example: $\rho = 0.7$

k	I_k	W	U	J	V_J	$\mathbb{S}(X)$	М	$M > \rho$	Fast Learning			
1	11100	$\begin{pmatrix} .33 & .33 \\ .33 & .33 \\ .33 & .33 \\ .33 & .33 \\ .33 & .33 \\ .33 & .33 \end{pmatrix}$	(.99 .99)	1	11111	11100	1.0	Yes	$\mathbf{W} = \begin{pmatrix} .5 & .33 \\ .5 & .33 \\ .5 & .33 \\ 0 & .33 \\ 0 & .33 \end{pmatrix} \mathbf{V} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$			
2	11000	$\begin{pmatrix} .5 & .33 \\ .5 & .33 \\ .5 & .33 \\ 0 & .33 \\ 0 & .33 \end{pmatrix}$	(1.0 .66)	1	11100	11000	1.0	Yes	$\mathbf{W} = \begin{pmatrix} .66 & .33 \\ .66 & .33 \\ 0 & .33 \\ 0 & .33 \\ 0 & .33 \end{pmatrix} \mathbf{V} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$			
3	00001	$\begin{pmatrix} .66 & .33 \\ .66 & .33 \\ 0 & .33 \\ 0 & .33 \\ 0 & .33 \end{pmatrix}$	(0.33)	2	11111	00001	1.0	Yes	$\mathbf{W} = \begin{pmatrix} .66 & 0 \\ .66 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{V} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$			
4	00011	$\begin{pmatrix} .66 & 0 \\ .66 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$	(0 1) (0) (-)	2 1 3	00001 11000 11111	00001 00000 00011	0.5 0.0 1.0	No No Yes	$\mathbf{W} = \begin{pmatrix} .66 & 0 & 0 \\ .66 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & .66 \\ 0 & 1 & .66 \end{pmatrix} \mathbf{V} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$			

ART 1: MATLAB Code

n = 5 %Initialize n,m, and rho m = 1 rho = 0.3 out = ones(m,n) %Outstar initialized to 1 inwt = 2/(1+n) %Initial value of each instar weight in = (inwt*out)' %Instar set up

p=[1 1 1 0 0 %Store the patterns 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1]

q = 4 %q patterns to be classified

newnodeflag = 1 %Get into the loop while(newnodeflag==1) % New node added to F2... newnodeflag =0 % reset the newnodeflag... for k = 1:q % for each pattern outstarlearn = 0 % reset the outstar learnt flag index = ones(1,m) % all nodes can compete y = p(k,:)*in % compute F2 activations while(sum(index) ~= 0) % some nodes not reset [maxy,windex] = max(y) % find index of winner s = out(windex,:).*p(k,:) % compute F1 signals M = sum(s)/sum(p(k,:)) % Find ratio of signals, M if M > rho % check ratio with vigilance out(windex,:) = s % if ok then learn in(:,windex) = (2/(1+sum(s)))*s' outstarlearn = 1 % set learnt flag break % exit else index(windex) = 0 % else reset the index entry y(windex) = -1 % suppress activity of M end % (they can never be negative!) end

% No node could classify

if (~(outstarlearn) & sum(index) == 0)
m = m+1 % add a new node
out(m,:)=p(k,:) % Learn
in(:,m)=p(k,:)'*(2/(1+sum(p(k,:))))
newnodeflag = 1 % set the new node added flag
end
end
end
end

Neurophysiological Evidence for ART Mechanisms

- The attentional subsystem of an ART network has been used to model aspects of the inferotemporal cortex
- Orienting subsystem has been used to model a part of the hippocampal system, which is known to contribute to memory functions
- The feedback prevalent in an ART network can help focus attention in models of visual object recognition

Ehrenstein Pattern Explained by ART !

Generates a circular illusory contour – a circular disc of enhanced brightness The bright disc disappears when the alignment of the dark lines is disturbed!

Other Neurophysiological Evidence

- Adam Sillito [University College, London]
 - Cortical feedback in a cat tunes cells in its LGN to respond best to lines of a specific length.
- Chris Redie [MPI Entwicklungsbiologie, Germany]
 - Found that some visual cells in a cat's LGN and cortex respond best at line ends— more strongly to line ends than line sides.
- Sillito et al. [University College, London]
 - Provide neurophysiological data suggesting that the cortico-geniculate feedback closely resembles the matching and resonance of an ART network.
 - Cortical feedback has been found to change the output of specific LGN cells, increasing the gain of the input for feature linked events that are detected by the cortex.

On Cells and Off Cells


```
(b) Off Cell
```

V1 - LGN Feedback

Responses of ON-OFF cells along the ends and edges of a dark line

Modifies ON-OFF cell activities to create brightness buttons

ART 1: Clustering Application

Clustering pixel based alphabet images

ART 1: Clustering Application

_	Iteration#1-10	Outstar 1	Outstar 2	Iteration#11-20	Outstar 1	Outstar 2	
$\square \rho$ = 0.3							

ART 1: Clustering Application

 $\square \rho$ =

0.7	Patterns	Outstar1	Outstar2	Outstar3	Outstar4	Outstar5	Outstar6	
0.7								

Other Applications

Aircraft Part Design Classification System.

See text for details.