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Adaptive Resonance Adaptive Resonance 
TheoryTheory



Competition and CooperationCompetition and Cooperation
Ubiquitous in the real world
Ensemble based neuronal cooperation and competition

Neurons race to enhance their activation.
Neurons within an ensemble compete with one another to 
maximize their activation.
Complex feedback paths within and between such 
ensembles
Quickly lead to very complicated dynamics.
Primary aim:

Constrain the network architecture and neuron signal 
functions sufficiently enough to extract useful 
functionality from the system



Noise Noise vsvs SaturationSaturation
Noise:

Operating levels of neuronal signals are very 
small
Small signals can be easily lost as noise

Saturation:
All neurons have finite operating levels
Strong signals can cause neurons to 
saturate, leading effectively to a loss of 
information



NoiseNoise––Saturation DilemmaSaturation Dilemma
If the activities of neurons are sensitive 
to small inputs, how does one avoid 
having them saturate for large inputs?
If the activities are sensitive to large 
inputs, how does one avoid small inputs 
getting lost as noise?



An Interpretation of ActivationAn Interpretation of Activation
Each node comprises 
a population of B
excitable cells
Measure of the 
activity of a node is 
the number of cells 
that are firing at any 
point of time 
Range of neuron 
activation is 0 to B
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The layer F comprises n nodes which 
can receive an external input I



Functional Unit is a Spatial Functional Unit is a Spatial 
Pattern: Noise Pattern: Noise vsvs SaturationSaturation

Noise
Small inputs

Saturation

Large inputs

Input Spatial pattern Network Activation Pattern



Shunting Net: No InteractionsShunting Net: No Interactions

xi xnx2x1 … …

++ + +

… …

I1 I2 Ii In



Shunting Network with no InteractionsShunting Network with no Interactions

Assume a spatial pattern
θ = (θ1, . . . , θn)T

where
In equilibrium



Shunting Network with no InteractionsShunting Network with no Interactions

As the input intensity increases, activities saturate in a 
shunting network with no interactions



Shunting Networks with Lateral Shunting Networks with Lateral 
InteractionsInteractions

Preserve the sensitivity of the network 
to θi even as the total input intensity 
increases
Note

Cooperation
Competition



OnOn--Center OffCenter Off--Surround NetworkSurround Network

x1 x2 xi xn… …
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Ii InI1

Introducing lateral interactions of external inputs to the 
shunting network can help solve the noise-saturation dilemma



Multiplicative or Shunting Multiplicative or Shunting 
InteractionsInteractions

Introduce a multiplicative or shunting
feedback term

Cooperation Competition

Product terms



Shunting Nets Don’t Saturate!Shunting Nets Don’t Saturate!
Steady state analysis reveals

System activities no longer saturate as the input 
intensity increases
Pattern information is preserved for an infinite 
operating range! 
Simple competitive feedback solves the noise–
saturation dilemma.



Automatic Gain ControlAutomatic Gain Control
Factor xi which multiplies Σ Ij is an automatic 
gain control

Large activity values: xi increases towards B and the 
effective inhibitory feedback increases which tends 
to restore the activity towards the zero state 
resting level
Low activity values: inhibition becomes small allowing 
the dynamics to be governed to a large extent by 
the excitation
Automatic gain control helps to maintain the 
system’s sensitivity to pattern information at 
varying levels of input intensity



Simple Shunting Networks: Shift Simple Shunting Networks: Shift 
InvarianceInvariance

System maintains its 
sensitivity for different 
off-surrounds
A larger off-surround 
requires a larger on-
center at which the 
system demonstrates 
that sensitivity
System automatically 
adapts its range of 
sensitivity depending on 
the value of the present 
off-surround level



Simple Shunting Networks: Shift Simple Shunting Networks: Shift 
InvarianceInvariance

Shunting networks shift their range of sensitivity as a 
function of  the net off-surround



Simple Shunting Networks: Shift Simple Shunting Networks: Shift 
InvarianceInvariance

Make the shunting model  more biological 
Activity levels go negative as they do in vivo
Range from [0,B] to [−C,B]
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Simple Shunting Networks: Noise Simple Shunting Networks: Noise 
SuppressionSuppression

In steady state
C/(C+B) is called the 
adaptation level
A threshold that θi
must exceed in 
order to produce a 
positive activity level
Such a network can 
suppress noise: zero 
spatial frequency 
patterns



Simple Shunting Networks: Noise Simple Shunting Networks: Noise 
SuppressionSuppression

Suppose the ratio of C/B matches the 
ratio of nodes excited by Ii to those 
inhibited by Ii
In other words, we set C/B = 1/(n-1) or 
C/(C+B) = 1/n

j j

Shunting networks with a 
hyperpolarizing term suppress noise



Noise Suppression Facilitates Noise Suppression Facilitates 
Pattern MatchingPattern Matching

When two spatial 
patterns impinge 
simultaneously on an 
on-center–off-
surround network, 
the network 
computes the extent 
to which they match.



Noise Suppression Facilitates Noise Suppression Facilitates 
Pattern MatchingPattern Matching

In-phase patterns reinforce one another and are amplified

Out of phase patterns lead to somewhat uniform activity patterns which are suppressed



Recurrent OnRecurrent On--CenterCenter——OffOff--Surround Surround 
NetworksNetworks

Include inhibitory and excitatory intra-
field signal feedback



Generalized OnGeneralized On--Center OffCenter Off--
Surround SystemsSurround Systems

The noise suppression property when 
generalized to systems that have distance 
dependent interactions
Endows them with the capability to detect 
edges in a spatial input
Connectivity in networks with distance 
dependent interactions is usually governed by 
kernel functions such as the Gaussian function
Also form the basis of Mexican hat networks 
we study in Chapter 12



Shunting Model has CohenShunting Model has Cohen––GrossbergGrossberg
DynamicsDynamics

Consider, the general class of on-center–
off-surround shunting models

Set yi=xi+Ci



Shunting Model has CohenShunting Model has Cohen––GrossbergGrossberg
DynamicsDynamics

With the substitutions:



Transformation to Pattern Variable Transformation to Pattern Variable 
FormForm

See algebra in text

Pattern variable

Signal to activation ratio



Choice of the Signal Function Choice of the Signal Function 
Determines Network Determines Network BehaviourBehaviour

Case 1: Linear 
Signal Function

Stores patterns, 
amplifies noise



Choice of the Signal Function Choice of the Signal Function 
Determines Network Determines Network BehaviourBehaviour

Case 2: Slower-
than-linear Signal 
Function

Amplifies noise, and 
experiences seizure.



Choice of the Signal Function Choice of the Signal Function 
Determines Network Determines Network BehaviourBehaviour

Case 3: Faster-
than-linear Signal 
Function

Quenches noise, and 
exhibits winner-
take-all behaviour.



Choice of the Signal Function Choice of the Signal Function 
Determines Network Determines Network BehaviourBehaviour

Case 4: Combining 
the Three Cases: 
Sigmoidal Signal 
Function

Combining the three 
cases: faster-than-
linear, linear, slower 
than-linear, 
quenches noise and 
enhances the signal.



Building Blocks of Adaptive Building Blocks of Adaptive 
ResonanceResonance

Study specialized architectures of neuronal 
systems that integrate both short-term 
memory and long-term memory dynamics
Perform powerful functions of storing, 
recalling and recognizing spatial patterns of 
neuronal activity
Simple building blocks when put together in a 
systematic way, result in the adaptive 
resonance architecture
Two models required are

outstars
instars



OutstarOutstar: Architecture: Architecture
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OutstarOutstar: Analysis: Analysis
Total activity equations

LTM values read 
into STM activities

spatial pattern 
read into STM

STM downloads 
into LTM



OutstarOutstar: Analysis: Analysis
In the absence of the 
command neuron signal, sc = 
0

External inputs set up 
neuronal activities quickly 
to extract pattern space 
information
No learning can take place 
unless the command 
neuron switches on.

In the absence of any input 
when θi = 0

LTMs are read out into 
STMs when external 
inputs are absent and the 
command neuron switches 
on

Fast

Slow



InstarInstar: Architecture: Architecture
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InstarInstar: Analysis: Analysis
In the steady state,

Assume for analysis that si = Kθi
Therefore



InstarInstar: Analysis: Analysis
Pattern information 
is downloaded into 
LTMs
Learning is “gated” 
by the postsynaptic 
neuron activation y

Ky/W



InstarInstar: Analysis: Analysis
Special Case: Learning has Signal 
Hebbian Form

The form of the signal s is binary 
threshold

Learning takes place only if s  = 1



Fundamental QuestionsFundamental Questions
“How do internal representations of the 
environment develop through 
experience?”

How is there a consistency between such 
internal models?
How do errors in internal codes get 
corrected?
How does the system adapt to a constantly 
changing environment?



HelmholtzHelmholtz Doctrine of PerceptionDoctrine of Perception
Internal cognitive factors dramatically 
influence our perception of the environment

When external sensory data impinges on a system, it 
sets up an internal feedback process
This elicits a feedback expectancy or learned 
prototype
This modifies the external sensory data patterns 
recorded.
It is only when there is a consensus or “resonance” 
between an impinging pattern and a learnt feedback 
expectancy prototype that true perception takes 
place



Substrate of Resonance (1)Substrate of Resonance (1)

Weighted pathways 
form an instar

A spatial pattern of 
activity filters from 
F1 to F2 through the 
instars



Substrate of Resonance (2)Substrate of Resonance (2)

A bottom-up input elicits a learned feedback 
expectancy in the form of a top-down response. 

Superimposition of patterns in F1
can then either lead to pattern
reinforcement or suppression



Substrate of Resonance (3)Substrate of Resonance (3)
Pattern matching represents a resonance between 
the input and what is expected to be seen as input
This cycle of resonance should persist between 
layers F1 and F2 as long as the input is held active.
Pattern mismatch represents a condition of 
dissonance 

Signals a coding error
Pattern of uniform/near uniform activities should be 
suppressed along with the elicited pattern X 
Paves the way for the external input to elicit another 
expectancy pattern across F2 which might match the 
present input to a greater extent



Structural Details of the Resonance Structural Details of the Resonance 
ModelModel

Bottom-up inputs 
filter from F1 to F2
through instar
weights
Learned feedback 
expectancy elicited 
from F2 is fed back 
to F1 through an 
outstar

F2

F1…



Structural Details of the Resonance Structural Details of the Resonance 
Model: Model: AttentionalAttentional VigilanceVigilance

An external reset node 
that samples the net 
activity of the input 
pattern and the activity 
of the pattern that 
develops across F1 after 
top-down feedback is 
superimposed
Attentional vigilance
Facilitates long-term 
suppression of the F2
node that fires in case 
of an error

F2

F1
-

+
I

…

A



Search Cycle using Search Cycle using AttentionalAttentional
VigilanceVigilance

If the feedback reinforces the spatial pattern across F1
Activity levels of F1 nodes are amplified
Increases the inhibition to A further
increasingly difficult for A to fire

If the feedback pattern mismatches the pattern presently set 
up across F1

Leads to a suppression of activities of F1 nodes.
Decreases the net inhibition to A
Results in the net activation of node A going above the threshold.
Causes A to fire
When A fires, its signal provides long lasting inhibition to the 
currently firing node of F2
This suppresses the feedback
Causes the original spatial pattern that elicited the feedback to be 
reinstated across F1
The competitive processes in F2 select a new winner which elicits a 
new feedback and a new search cycle is initiated.



Adaptive Resonance Theory 1 Adaptive Resonance Theory 1 
(ART 1)(ART 1)

ART 1 is a binary classification model. 
Various other versions of the model have 
evolved from ART 1
Pointers to these can be found in the 
bibliographic remarks
The main network comprises the layers F1, F2
and the attentional gain control as the 
attentional subsystem
The attentional vigilance node forms the 
orienting subsystem



ART 1: ArchitectureART 1: Architecture
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Orienting Subsystem
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ART 1: STM DynamicsART 1: STM Dynamics
neuronal activations are confined to 
intervals 

[−B1/C1, 1/A1]
[−B2/C2, 1/A2]

For details see text



ART 1: Binary Switching ScenarioART 1: Binary Switching Scenario

F2 behaves like a binary choice network

In this binary switching scenario then,
Vi =D1 vJi where node J of F2 is active

Top down feedback vector VJ is a scaled 
version of the outstar weights that 
emanate from the only active node J : 

VJ = D1(vJ1, . . . , vJn)T



ART 1: 2/3 RuleART 1: 2/3 Rule
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•External input Ii
•Top-down feedback through outstar weights vji
•Gain control signal sG

Three kinds of inputs to 
each F1 neuron decide 
when the neuron fires



ART 1: 2/3 RuleART 1: 2/3 Rule
The gain control signal 
sG = 1 if I is presented 
and all neurons in F2 are 
inactive
sG is nonspecific
When the input is 
initially presented to the 
system, sG= 1
As soon as a node J in F2
fires as a result of 
competition, sG = 0



LongLong--term Memory Dynamicsterm Memory Dynamics
Bottom-up connections,

Top-down connections,



Weber Law RuleWeber Law Rule
Basic idea

Values of weights learnt during presentation of a 
pattern A with a smaller number of active nodes 
should be larger than weights learnt during 
presentation of another pattern B with a larger 
number of active nodes

Mathematically
As instar learning proceeds, the connection strength 
between active F1 and F2 nodes asymptotically 
approaches a value



Weber Law Rule: Encoding InstarsWeber Law Rule: Encoding Instars
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Design of LTM Coefficient for Design of LTM Coefficient for 
Weber Law RuleWeber Law Rule

Return to the LTM 
dynamics equation:

Choose

Then,

Straightforward to 
verify that this 
embodies Weber Law 
Form



Final LTM EquationsFinal LTM Equations
Instar

Outstar



Vigilance ParameterVigilance Parameter
When VJ impinges on F1

the activity of the signal vector can either remain 
the same if VJ = I or 
can decrease if VJ differs from I at some positions

Degree of match measured by

Set a threshold ρ, called the vigilance 
parameter which defines the degree of match 
necessary to admit pattern I to a class (or 
cluster) J



ResonanceResonance
Resonance occurs when an 
external input filters 
through to F2 and causes a 
category node J to fire 
which in turn sends back an 
expectation that matches 
the input to a degree 
greater than the vigilance 
parameter.
The modified signal vector 
(after feedback) must 
subsequently cause the 
same F2 node to fire in 
order for resonance to 
occur. 

The degree of match is 
acceptable

System goes into the 
resonant state
Admits the present input 
to category J
Fast learning takes place: 
learning is assumed to be 
immediate



STM ResetSTM Reset
The degree of match is less than the minimum 
acceptable value as defined by ρ
The system cannot admit the current input 
pattern I into presently firing category J of F2

Node A immediately fires an STM reset that 
provides a long lasting suppression of the 
presently active node of F2

This switches off the top-down outstar
feedback and restores sG and S(X) = I



SearchSearch
Competition takes place between the remaining m − 1 nodes

A new winner emerges
A new outstar readout takes place.

The new feedback vector is compared with the input I
S(X) is possibly modified 

|S(X)|/|I| is recomputed and compared with ρ
If it is greater than ρ, then resonance
If it is less than ρ, then an STM reset fires again and 
suppresses this second node of F2, and the search 
repeats
If all nodes are exhausted the ART system adds a new F2
node and admits the current input directly.



ART 1: Operational SummaryART 1: Operational Summary



ART 1: Operational SummaryART 1: Operational Summary



ART 1: Operational SummaryART 1: Operational Summary



HandHand--worked Exampleworked Example
Cluster the vectors 11100, 11000, 00001, 
00011
Low vigilance: 0.3
High vigilance: 0.7



HandHand--worked Example: worked Example: ρρ = 0.3= 0.3



HandHand--worked Example: worked Example: ρρ = 0.7= 0.7



ART 1: MATLAB CodeART 1: MATLAB Code
n = 5 %Initialize n,m, and rho
m = 1
rho = 0.3
out = ones(m,n) %Outstar initialized to 1
inwt = 2/(1+n) %Initial value of each instar weight
in = (inwt*out)’ %Instar set up

p=[1 1 1 0 0 %Store the patterns
1 1 0 0 0
0 0 0 0 1
0 0 0 1 1]

q = 4 %q patterns to be classified

newnodeflag = 1 %Get into the loop
while(newnodeflag==1) % New node added to F2...
newnodeflag =0 % reset the newnodeflag...
for k = 1:q % for each pattern

outstarlearn = 0 % reset the outstar learnt flag
index = ones(1,m) % all nodes can compete
y = p(k,:)*in % compute F2 activations
while(sum(index) ˜= 0) % some nodes not reset

[maxy,windex] = max(y) % find index of winner
s = out(windex,:).*p(k,:) % compute F1 signals

M = sum(s)/sum(p(k,:)) % Find ratio of signals, M
if M > rho % check ratio with vigilance

out(windex,:) = s % if ok then learn
in(:,windex) = (2/(1+sum(s)))*s’
outstarlearn = 1 % set learnt flag
break % exit

else
index(windex) = 0 % else reset the index entry
y(windex) = -1 % suppress activity of M

end % (they can never be negative!)
end

% No node could classify

if (˜(outstarlearn) & sum(index) == 0)
m = m+1 % add a new node
out(m,:)=p(k,:) % Learn
in(:,m)=p(k,:)’*(2/(1+sum(p(k,:))))
newnodeflag = 1 % set the new node added flag

end
end
end



NeurophysiologicalNeurophysiological Evidence for ARTEvidence for ART
MechanismsMechanisms

The attentional subsystem of an ART network 
has been used to model aspects of the 
inferotemporal cortex
Orienting subsystem has been used to model a 
part of the hippocampal system, which is known 
to contribute to memory functions
The feedback prevalent in an ART network can 
help focus attention in models of visual object 
recognition



EhrensteinEhrenstein Pattern Explained by Pattern Explained by 
ART !ART !

Generates a circular illusory 
contour – a circular disc of 
enhanced brightness

The bright disc disappears 
when the alignment of the dark 
lines is disturbed!



Other Other NeurophysiologicalNeurophysiological EvidenceEvidence
Adam Sillito [University College, London]

Cortical feedback in a cat tunes cells in its LGN to 
respond best to lines of a specific length. 

Chris Redie [MPI Entwicklungsbiologie, Germany]
Found that some visual cells in a cat’s LGN and cortex 
respond best at line ends— more strongly to line ends 
than line sides. 

Sillito et al. [University College, London]
Provide neurophysiological data suggesting that the 

cortico-geniculate feedback closely resembles the 
matching and resonance of an ART network. 
Cortical feedback has been found to change the output of 
specific LGN cells, increasing the gain of the input for 
feature linked events that are detected by the cortex. 



On Cells and Off CellsOn Cells and Off Cells
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V1 V1 –– LGN FeedbackLGN Feedback
Responses of ON-
OFF cells along the 
ends and edges of a 
dark line

Modifies ON-OFF 
cell activities to 
create brightness 
buttons

V1– LGN feedback pattern
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ART 1: Clustering ApplicationART 1: Clustering Application
Clustering pixel 
based alphabet 
images



ART 1: Clustering ApplicationART 1: Clustering Application
ρ = 0.3



ART 1: Clustering ApplicationART 1: Clustering Application
ρ = 0.7



Other ApplicationsOther Applications
Aircraft Part Design Classification 
System.

See text for details.


