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Chapter 12Chapter 12

Towards the SelfTowards the Self--
Organizing Feature Organizing Feature 
MapMap



Properties of Stochastic DataProperties of Stochastic Data
Impinging inputs comprise a stream of 
stochastic vectors that are drawn from a 
stationary or non-stationary probability 
distribution
Characterization of the properties of the input 
stream is of paramount importance

simple average of the input data
correlation matrix of the input vector stream 



Properties of Stochastic DataProperties of Stochastic Data
Stream of stochastic data vectors:

Need to have complete information about the 
population in order to calculate statistical quantities 
of interest 
Difficult since the vectors stream is usually drawn 
from a real-time sampling process in some 
environment

Solution:
Make do with estimates which should be computed 
quickly and be accurate such that they converge to 
the correct values in the long run



SelfSelf--OrganizationOrganization
Focus on the design of self-organizing systems 
that are capable of extracting useful 
information from the environment
Primary purpose of self-organization:

the discovery of significant patterns or invariants
of the environment without the intervention of a 
teaching input

Implementation: Adaptation must be based on 
information that is available locally to the 
synapse—from the pre- and postsynaptic 
neuron signals and activations



Principles of SelfPrinciples of Self--OrganizationOrganization
Self-organizing systems are based on  
three principles:

Adaptation in synapses is self-reinforcing
LTM dynamics are based on competition
LTM dynamics involve cooperation as well



HebbianHebbian LearningLearning
Incorporates both exponential 
forgetting of past information and 
asymptotic encoding of the product of 
the signals

The change in the weight is dictated by 
the product of signals of the pre- and 
postsynaptic neurons



Why is Why is HebbianHebbian Learning Useful?Learning Useful?
A single linear unit using Hebbian
learning can extract the dominant eigen-
direction of the correlation matrix of an 
input vector stream that comprises 
patterns drawn from some unknown 
probability distribution



Linear Neuron and Discrete Time Linear Neuron and Discrete Time 
FormalismFormalism
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(a) A linear neuron                            (b) Discrete time formalism



Activation and Signal ComputationActivation and Signal Computation

Input vector X is assumed to be drawn 
from a stationary stochastic distribution
X = (x1

k, . . . , xn
k)T ,W = (w1

k, . . . ,wn
k)T

Continuous
Discrete 



Vector Form of Simple Vector Form of Simple HebbianHebbian
LearningLearning

The learning law 
perturbs the weight 
vector in the direction 
of Xk by an amount 
proportional to 

the signal, sk, or 
the activation yk (since 
the signal of the linear 
neuron is simply its 
activation)

One can interpret the Hebb
learning scheme of as adding 
the impinging input vector to 

the weight vector in direct 
proportion to the similarity 

between the two



Points worth noting…Points worth noting…
A major problem arises with the magnitude of 
the weight vector—it grows without bound! 
Patterns continuously perturb the system
Equilibrium condition of learning is identified 
by the weight vector remaining within a 
neighbourhood of an equilibrium weight vector
The weight vector actually performs a 
Brownian motion about this so-called 
equilibrium weight vector



Some AlgebraSome Algebra
Re-arrangement of the learning law:

Taking expectations of both sides



Equilibrium ConditionEquilibrium Condition
denotes the equilibrium weight vector: the 

vector towards the neighbourhood of which weight 
vectors converge after sufficient iterations elapse
Define the equilibrium condition as one such 
condition that weight changes must average to 
zero:

Shows that is an eigenvector of R corresponding 
to the degenerate eigenvalue λnull = 0



EigenEigen--decomposition of the Weight decomposition of the Weight 
VectorVector

In general, any weight vector can be expressed 
in terms of the eigenvectors:

Wnull is the component of W in the null 
subspace, ηi, ηj’ are eigenvectors corresponding 
to non-zero and zero eigenvalues respectively



Average Weight PerturbationAverage Weight Perturbation

ith eigenvalue

Kernel term
goes to zero

Consider a small perturbation 
about the equilibrium:

Expressing the perturbation 
using the eigen-decomposition:

Substituting back yields:



Searching the Maximal Searching the Maximal EigendirectionEigendirection
represents an unstable 

equilibrium
Dominant direction of 
movement is the one 
corresponding to the 
largest eigenvalue, and 
these components must 
therefore grow in time
Weight vector magnitude w 
grows indefinitely
Direction approaches the 
eigenvector corresponding 
to the largest eigenvalue

Small perturbations cause 
weight changes to occur in 

directions away from that of
towards eigenvectors 

corresponding to
non-zero eigenvalues



Oja’sOja’s RuleRule
Modification to the simple Hebbian
weight change procedure

Can be re-cast into a 
different form to 
clearly see the 
normalization



ReRe--compute the Average Weight compute the Average Weight 
ChangeChange

Compute the expected 
weight change 
conditional on Wk

Setting E[Wk] to zero 
yields the equilibrium 
weight vector

Define

Shows that

Ŵ

Self-normalizing!



Maximal Maximal EigendirectionEigendirection is the only is the only 
stable direction…stable direction…

Conducting a small neighbourhood analysis as 
before:

Then the average weight change is:

Compute the component of the average weight 
change E[∆W] along any other eigenvector, ηj
for j≠i clearly shows that the 

perturbation 
component along ηj
must grow if λj > λi



Operational Summary for Simulation Operational Summary for Simulation 
of of Oja’sOja’s rulerule



MATLAB Code for MATLAB Code for Oja’sOja’s RuleRule
plot(inputnew(1,:),inputnew(2,:),'.k'); % Plot 

scatter
axis equal
grid on

eta=0.15;                 % Initialize learning rate
w=[.1;.5];                  % and the weights

for epoch=1:15         % We'll do 15 epochs
for i=1:500

% Compute activation
s = inputnew(:,i)' * w; 

% Update weights
w = w + eta * s * (input(:,i) - s*w);

% Plot weight point
plot(w(1),w(2),'.','markersize',10); end

end

x=0.5*randn(500,1); % Generate X scatter
y=0.05*randn(500,1); % Generate Y scatter
input=[x';y']; % Create input data 

matrix
theta = 0;
r=[cos(theta) -sin(theta)

sin(theta) cos(theta)];
inputnew=r*input;

xshift=0;
yshift=0;

for i=1:500
inputnew(1,i)=inputnew(1,i)+xshift;
inputnew(2,i)=inputnew(2,i)+yshift;

End

figure
hold on
zoom on



Simulation of Simulation of Oja’sOja’s RuleRule



Principal Components AnalysisPrincipal Components Analysis
Eigenvectors of the correlation matrix of the input data 
stream characterize the properties of the data set
Represent principal component directions (orthogonal 
directions) in the input space that account for the data’s 
variance
High dimensional applications:

possible to neglect information in certain less important 
directions
retaining the information along other more important 
ones
reconstruct the data points to well within an acceptable 
error tolerance.



Subspace DecompositionSubspace Decomposition
To reduce dimension

Analyze the correlation matrix R of the 
data stream to find its eigenvectors and 
eigenvalues
Project the data onto the eigendirections.
Discard n–m components corresponding to n–
m smallest eigenvalues



Sanger’s RuleSanger’s Rule
m node linear neuron network that accepts n-dimensional 
inputs can extract the first m principal components

Sanger’s rule reduces to Oja’s learning rule for a single 
neuron
Searches the first (and maximal) eigenvector or first 
principal component of the input data stream
Weight vectors of the m units converge to the first m 
eigenvectors that correspond to eigenvalues λ1 ≥ λ2 ≥… ≥ λm



Generalized Learning LawsGeneralized Learning Laws
Generalized forgetting laws take the form:

Assume that the impinging input vector X ∈ℜn

is a stochastic variable with stationary 
stochastic properties; W∈ℜn is the neuronal 
weight vector, and φ(·) and γ (·) are possibly 
non-linear functions of the neuronal signal 
Assume X is independent of W



Questions to AddressQuestions to Address
What kind of information does the 
weight vector asymptotically encode?
How does this information depend on the 
generalized functions φ(·) and γ (·) ?



Two Laws to AnalyzeTwo Laws to Analyze
Adaptation Law 1

A simple passive decay of weights proportional to 
the signal, and a reinforcement proportional to the 
external input:

Adaptation Law 2
The standard Hebbian form of adaptation with 
signal driven passive weight decay:



Analysis of Adaptation Law 1Analysis of Adaptation Law 1

Since X is stochastic (with stationary 
properties), we are interested in the 
averaged or expected trajectory of the 
weight vector W
Taking the expectation of both sides:



An Intermediate ResultAn Intermediate Result



Asymptotic AnalysisAsymptotic Analysis
Note that the mean    is a constant
We are interested in the average angle 
between the weight vector and the 
mean:



Asymptotic AnalysisAsymptotic Analysis

where in the end we have employed the Cauchy–Schwarz inequality. Since dcosθ/dt

is non-negative, θ converges uniformly to zero, with dcosθ/dt = 0 iff     and W have 

the same direction. Therefore, for finite and W, the weight vector direction 

converges asymptotically to the direction of     .

X
X

X



Analysis of Adaptation Law 2Analysis of Adaptation Law 2

Taking the expectation of both sides 
conditional on W



Fixed points of Fixed points of WW
To find the fixed points, set the expectation 
of the expected weight derivative to zero:

From where

Clearly, eigenvectors of R are fixed point 
solutions of W



All All EigensolutionsEigensolutions are not Stableare not Stable
The ith solution is the eigenvector ηi of R with 
corresponding eigenvalue

Define θi as the angle between W and ηi , 
and analyze (as before) the average 
value of rate of change of cos θi , 
conditional on W



Asymptotic AnalysisAsymptotic Analysis

Contd.



Asymptotic AnalysisAsymptotic Analysis



Asymptotic AnalysisAsymptotic Analysis
It follows from the 
Rayleigh quotient that 
the parenthetic term is 
guaranteed to be 
positive only for λi = λmax, 
which means that for 
the eigenvector ηmax the 
angle θmax between W 
and ηmax monotonically 
tends to zero as learning 
proceeds



First Limit TheoremFirst Limit Theorem
Let α > 0, and s = XTW. Let γ (s) be an arbitrary scalar 
function of s such that E[γ (s)] exists. Let X(t ) ∈ ℜn be 
a stochastic vector with stationary stochastic 
properties,  being the mean of X(t) and X(t) being 
independent ofW
If equations of the form

have non-zero bounded asymptotic solutions, then these 
solutions must have the same direction as that of    

X

X



Second Limit TheoremSecond Limit Theorem
Let α, s and γ (s) be the same as in Limit 
Theorem 1. Let R = E[XXT] be the correlation 
matrix of X. If equations of the form :

have non-zero bounded asymptotic solutions, 
then these solutions must have the same 
direction as ηmax where ηmax, is the maximal 
eigenvector of R with eigenvalue λmax, provided 
ηT

maxW(0) = 0



Competitive Neural NetworksCompetitive Neural Networks
Competitive networks

cluster
encode 
classify

data by identifying
vectors which logically belong to the same 
category
vectors that share similar properties 

Competitive learning algorithms use competition 
between lateral neurons in a layer (via lateral 
interconnections) to provide selectivity (or 
localization) of the learning process



Types of CompetitionTypes of Competition
Hard competition

exactly one neuron—the one with the largest 
activation in the layer—is declared the 
winner
ART 1 F2 layer

Soft competition
competition suppresses the activities of all 
neurons except those that might lie in a 
neighbourhood of the true winner
Mexican Hat Nets



Competitive Learning is LocalizedCompetitive Learning is Localized
CL algorithms employ localized learning

update weights of only the active neuron(s) 
CL algorithms identify codebook vectors
that represent invariant features of a 
cluster or class



Vector QuantizationVector Quantization
If many patterns Xk cause cluster neuron j to 
fire with maximum activation a codebook 
vector Wj = (w1j , . . . ,wnj )T behaves like a 
quantizing vector
Quantizing vector : representative of all 
members of the cluster or class
This process of representation is called vector 
quantization
Principal Applications

signal compression
function approximation
image processing



Competitive Learning NetworkCompetitive Learning Network
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Example of CLExample of CL
Three clusters of vectors 
(denoted by solid dots) 
distributed on the unit 
sphere 
Initially randomized 
codebook vectors (crosses)  
move under influence of a 
competitive learning rule to 
approximate the centroids
of the clusters
Competitive learning 
schemes use codebook 
vectors to approximate 
centroids of data clusters



Principle of Competitive LearningPrinciple of Competitive Learning
Given a sequence of stochastic vectors 
Xk ∈ ℜn drawn from a possibly unknown 
distribution, each pattern Xk is compared 
with a set of initially randomized weight 
vectors Wj ∈ ℜn and the vector WJ which 
best matches Xk is to be updated to 
match Xk more closely



Inner Product Inner Product vsvs Euclidean Distance Euclidean Distance 
Based CompetitionBased Competition

Inner Product 

Euclidean Distance Based Competition



Two sides of the same coin!Two sides of the same coin!
Assume: weight vector equinorm property 



Generalized CL LawGeneralized CL Law
For an n - neuron competitive network



Vector Quantization RevisitedVector Quantization Revisited
An important application of competitive 
learning 
Originally developed for information 
compression applications
Routinely employed to store and transmit 
speech or vision data.
VQ places codebook vectors Wi into the signal 
space in a way that minimizes the expected 
quantization error



Example: Example: VoronoiVoronoi TesselationTesselation
Depict classification 
regions that are formed 
using the 1-nearest 
neighbour classification 
rule
Voronoi bin specified by 
a codebook vector WJ is 
simply the set of points 
in Rn whose nearest 
neighbour of all Wj is 
WJ a Euclidean distance 
measure

20 randomly generated 
Gaussian distributed points 
using the MATLAB voronoi
command 



Unsupervised Vector QuantizationUnsupervised Vector Quantization
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Unsupervised VQUnsupervised VQ
Compares the current random sample 
vector Zk = (Xk | Yk) with the C 
quantizing weight vectors Wj (k) (weight 
vector Wj at time instant k)
Neuron J wins based on a standard 
Euclidean distance competition



Unsupervised VQ LearningUnsupervised VQ Learning
Neuron J learns the input pattern in 
accordance with standard competitive learning 
in vector form:

Learning coefficient ηk should decrease 
gradually towards zero
Example: ηk = η0[1 − k/2Q] for an initial learning 
rate η0 and Q training samples 
Makes η decrease linearly from η0 to zero over 
2Q iterations



Scaling the Data Components Scaling the Data Components 
Scale data samples {Zk} such that all features 
have equal weight in the distance measure
Ensures that no one variable dominates the 
choice of the winner
Embedded within the distance computation:



Operational Summary of AVQOperational Summary of AVQ



Operational Summary of AVQOperational Summary of AVQ



MATLAB Simulation Example on AVQMATLAB Simulation Example on AVQ
Cluster a three dimensional data set comprising 
200 data points using adaptive vector 
quantization
Data points generated to be randomly and 
normally distributed: 100 data points each 
about centers with coordinates (0,0,0) and 
(1,2,3), with a standard deviation 0.8
Cluster field assumed to comprise two neurons 
with instar weights initialized to (3,0,0) and 
(−2,3,5) respectively



MATLAB Simulation Example on AVQMATLAB Simulation Example on AVQ



MATLAB Code for AVQMATLAB Code for AVQ
% Program for AVQ Clustering: m clusters in n 

dimensions

m = 2; % Generate two clusters
fid=fopen(’./avqtest.dat’,’r’);% Open data file
pat = fscanf(fid,’%f %f’,[3 inf]);
fclose(fid);

% dimension n, and number of data Q
[n,Q]=size(pat); 

% Initial weight matrix w
w = [3 -2; 0 3; 0 5]; 

figure % plot the clusters
plot3(pat(1,:), pat(2,:), pat(3,:), ’b.’);
grid on;
hold on;
axis([-2 4 -2 5 -2 5]);

for i=1:Q % for each data point
% reset the minimum distance index
minindex = -1; 
% set the mindist variable to a large number
mindist = 1000;

for j=1:m % check distance to each codebook
dist = 0;
for k=1:n

dist = dist + (pat(k,i)-w(k,j))ˆ2;
end
dist = sqrt(dist);
if dist < mindist

minindex = j;
mindist = dist;

end
end
eta = 0.1*(1-(i/(2*Q))); % Update learning rate
for k=1:n % update the winning weight vector 
w(k,minindex) = w(k,minindex) + eta*(pat(k,i) –

w(k,minindex));
end



Supervised Vector QuantizationSupervised Vector Quantization
Suggested by Kohonen
Uses a supervised version of vector 
quantization 

Learning vector quantization (LVQ1)
Data classes defined in advance and each data 
sample is labelled with its class



Practical Aspects of LVQ1Practical Aspects of LVQ1
0 < ηk < 1 decreases monotonically with successive 
iterations
Recommended that ηk be kept small: 0.1
Vectors in a limited training set may be applied cyclically 
to the system as ηk is made to decrease linearly to zero
Use an equal number of codebook vectors per class

Leads to an optimal approximation of the class borders
Initialization of codebook vectors may be done to actual 
samples of each class
Define the number of iterations in advance:

Anything from 50 to 200 times the number of codebook 
vectors selected for representation



Operational Summary of LVQ1 Operational Summary of LVQ1 



Mexican Hat NetworksMexican Hat Networks
Closely follow biological structure
Evidence that certain two-dimensional 
structures of visual cortex neurons have 
lateral interactions with a connectivity pattern 
that exhibits:

Short range lateral excitation within a radius of 50–
100 µm
Region of inhibitory interactions outside the area of 
short range
Excitation which extends to a distance of about 
200–500 µm



Mexican Hat Connectivity PatternMexican Hat Connectivity Pattern



Mexican Hat Neural NetworkMexican Hat Neural Network
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Mexican Hat Neural NetworkMexican Hat Neural Network
Every neuron in the network follows has 
Mexican Hat lateral connectivity 
Two distinguishing behavioural
properties:

Spatial activity across the network clusters 
locally about winning neurons
Local cluster positions are decided by the 
nature of the input pattern



Mexican Hat Neural NetworkMexican Hat Neural Network
Quantify the total neuronal activity for 
the j th neuron as a sum of two 
components:

Possibly non-linear signal function
usually the piecewise linear threshold function



Discrete Approximation to Mexican Discrete Approximation to Mexican 
Hat ConnectivityHat Connectivity

Required for 
simulation
A neuron receives

constant lateral 
excitation from 2L 
neighbours
constant lateral 
inhibition from 2M 
neighbours



One Dimensional Mexican Hat One Dimensional Mexican Hat 
Network SimulationNetwork Simulation

Assume that index i runs over values assuming 
neuron j to be centered at position 0
Signals that correspond to index values that 
are out of range are simply to be disregarded 
(assumed zero)
Ij = φ(j ) is a smooth function of the array 
index j



Generalized Difference FormGeneralized Difference Form

Note the introduction of time index k

a, b control the extent of excitation 
and inhibition that a neuron receives

feedback factor γ determines the proportion of 
feedback that contributes to the new activation



Neuron Signal FunctionNeuron Signal Function
Uniformly assumed 
piecewise linear



One Dimensional SimulationOne Dimensional Simulation
Assume a field of 50 linear threshold 
neurons
Each has a discrete Mexican Hat 
connectivity pattern 
Simulate the system assuming a smooth 
sinusoidal input to the network:



One Dimensional SimulationOne Dimensional Simulation

(a) 15 snapshots of neuron 
field updates with γ = 1.5. 

(b) 15 snapshots of neuron 
field updates with γ = 0.75



MATLAB Code for Mexican Hat MATLAB Code for Mexican Hat 
NetworkNetwork
% Mexican Hat Network Simulation

leradius = 5; % excitation radius
liwidth = 10; % inhibition radius
interactlen = leradius + liwidth +1;
max = 10; % maximum signal value
excit = 0.1; % a
inhibit = -0.05;% b
feedback = 1.5; % gamma
for j=1:50 % Generate the Mex hat connectivity

for i=1:50 % 50 x 50 weights
indexdif = abs(j-i);
if (indexdif < interactlen)

if (indexdif < leradius+1)
w(j,i) = excit;

else
w(j,i) = inhibit;

end
else
w(j,i) = 0;

end
end

end

index=1:1:50;
input = sin(pi.*index/50);% set up input vector
s=zeros(50); % initialize signals
figure;
hold on

for t=1:15
for i =1:50 % compute activations

activation(i) = input(i);
for j=1:50

activation(i) = activation(i) +
feedback*w(j,i)*s(j);

end
end
for i=1:50 % compute signals
if (activation(i) > max) s(i) = max;
elseif (activation(i) < 0) s(i) = 0;
else s(i) = activation(i);
end

end
plot(index, s);

end
xlabel(’Neuron index’); ylabel(’Signal strength’);



Two Dimensional Mexican Hat Two Dimensional Mexican Hat 
Network SimulationNetwork Simulation

(a) Mexican hat connectivity portrayed 
for the central neuron in a
30 × 30 planar neuron field 

(b) Two dimensional Gaussian input
assumed for the simulation of the planar 
Mexican hat network



Two Dimensional Mexican Hat Two Dimensional Mexican Hat 
Network SimulationNetwork Simulation



Two Dimensional Mexican Hat Two Dimensional Mexican Hat 
Network SimulationNetwork Simulation



Two Dimensional Mexican Hat Two Dimensional Mexican Hat 
Network SimulationNetwork Simulation



SelfSelf--Organizing Feature MapsOrganizing Feature Maps
Dimensionality reduction + preservation of 
topological information common in normal 
human subconscious information processing
Humans

routinely compress information by extracting 
relevant facts
develop reduced representations of impinging 
information while retaining essential knowledge

Example: Biological vision
Three dimensional visual images routinely mapped 
onto a two dimensional retina
Information preserved to permit perfect 
visualization of a three dimensional world



Purpose of Intelligent Information Purpose of Intelligent Information 
Processing (Processing (KohonenKohonen))

Lies in the creation of simplified internal 
representations of the external world at 
different levels of abstraction



Computational MapsComputational Maps
Early evidence for computational maps comes 
from the studies of Hubel and Wiesel on the 
primary visual cortex of cats and monkeys
Specialized sensory areas of the cortex 
respond to the available spectrum of real world 
signals in an ordered fashion
Example:

Tonotonic map in the auditory cortex is perfectly 
ordered according to frequency



A Hierarchy of MapsA Hierarchy of Maps

Primary map

Sequence of 
temporal 
processing

retains fine grained topological 
ordering as present in the 
original sensory signals

Secondary map

Tertiary map



Topology PreservationTopology Preservation
Kohonen

“ . . . it will be intriguing to learn that an 
almost optimal spatial order, in relation to 
signal statistics can be completely 
determined in simple self-organizing 
processes under control of received 
information”



Topological MapsTopological Maps
Topological maps preserve an order or a 
metric defined on the impinging inputs 
Motivated by the fact that 
representation of sensory information in 
the human brain has a geometrical order
The same functional principle can be 
responsible for diverse (self-organized) 
representations of information—possibly 
even hierarchical



One Dimensional Topology Preserving One Dimensional Topology Preserving 
MapMap

m-neuron neural network
ith neuron produces a response si

k in
response to input Ik ∈ ℜn

Input vectors {Ik} are ordered 
according to some distance metric or 
in some topological way I1 R I2 R I3 . . . 
, where R is some ordering relation



One Dimensional Topology Preserving One Dimensional Topology Preserving 
MapMap

Then the network produces a one 
dimensional topology preserving map if 
for i1 > i2 > i3



SelfSelf--Organizing Feature MapOrganizing Feature Map
Finds its origin in the seminal work of 
von der Malsburg on self-organization
Basic idea:

In addition to a genetically wired visual 
cortex there has to be some scope for self-
organization of synapses of domain sensitive 
neurons to allow a local topographic ordering 
to develop



SelfSelf--Organizing Feature Map: Organizing Feature Map: 
Underlying IdeasUnderlying Ideas

Unsupervised learning process
Is a competitive vector quantizer
Real valued patterns are presented sequentially to a linear or 
planar array of neurons with Mexican hat interactions
Clusters of neurons win the competition
Weights of winning neurons are adjusted to bring about a better 
response to the current input
Final weights specify clusters of network nodes that are 
topologically close

sensitive to clusters of inputs that are physically close in the input 
space

Correspondence between signal features and response locations 
on the map

spatial location of a neuron in the array corresponds to a specific 
domain of inputs

Preserves the topology of the input



SOFM Network ArchitectureSOFM Network Architecture



RequirementsRequirements
Distance relations in high dimensional spaces 
should be approximated by the network as the 
distances in the two dimensional neuronal field:

input neurons should be exposed to a sufficient 
number of different inputs
only the winning neuron and its neighbours adapt 
their connections
a similar weight update procedure is employed on  
neurons which comprise topologically related subsets
the resulting adjustment enhances the responses to 
the same or to a similar input that occurs 
subsequently



NotationNotation
Each neuron is  identified 
by the double row–column 
index ij, i, j = 1, . . . ,m
The ij th neuron has an 
incoming weight vector
Wij (k) = (wk

1,ij , . . . ,wk
n,ij )



NeighbourhoodNeighbourhood ComputationComputation
Identify a neighbourhood NIJ around the 
winning neuron
Winner identified by minimum Euclidean 
distance to input vector:

Neighbourhood is a function of time: as 
epochs of training elapse, the 
neighbourhood shrinks



NeighbourhoodNeighbourhood ShapesShapes
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Adaptation in SOFMAdaptation in SOFM
Takes place according to the second 
generalized law of adaptation

γ (sij ) may be chosen to be linear

Choosing η = β



SOFM AdaptationSOFM Adaptation
Continuous time

Discrete time



Some ObservationsSome Observations
Ordering phase (initial period of adaptation) : learning 
rate should be close to unity
Learning rate should be decreased linearly, 
exponentially or inversely with iteration over the first 
1000 epochs while maintaining its value above 0.1
Convergence phase: learning rate should be maintained 
at around 0.01 for a large number of epochs

may typically run into many tens of thousands of 
epochs

During the ordering phase Nk
IJ shrinks linearly with k 

to finally include only a few neurons
During the convergence phase Nk

IJ may comprise only 
one or no neighbours



Simulation ExampleSimulation Example

The data employed in the 
experiment comprised 
500 points distributed 
uniformly over the bipolar 
square [−1, 1] × [−1, 1] 

The points thus describe
a geometrically square 
topology



SOFM SimulationSOFM Simulation



SOFM SimulationSOFM Simulation



SOFM SimulationSOFM Simulation



Simulation NotesSimulation Notes
Initial value of the neighbourhood radius r = 6

Neighbourhood is initially a square of width 12 
centered around the winning neuron IJ

Neighbourhood width contracts by 1 every 200
epochs
After 1000 epochs, neighbourhood radius 
maintained at 1

Means that the winning neuron and its four adjacent 
neurons are designated to update their weights on 
all subsequent iterations
Can also let this value go to zero which means that 
eventually, during the learning phase only the winning 
neuron updates its weights



MATLAB Code for SOFMMATLAB Code for SOFM
[val1,rows]=min(dist);
[val2,cols]=min(val1);
indxmin=rows(cols);
indymin=cols;
for i=indxmin-nbd:indxmin+nbd
for j=indymin-nbd:indymin+nbd
if((i >= 
1)&(i<=maxneuron)&(j>=1)&(j<=max
neuron))

instarx(i,j)=instarx(i,j)+eta*(data(
1,p)-instarx(i,j));

instary(i,j)=instary(i,j)+eta*(data(
2,p)-instary(i,j));

end
end

end
end

for epoch = 1:numpats*maxneuron
count = count + 1;
eta=0.9*(1 - epoch/1000); 
if (epoch > 999) eta = 0.005;
end

for p= 1:numpats
for indx = 1:maxneuron
for indy = 1:maxneuron

dist(indx,indy)=sqrt((instarx(indx,
indy)-data(1,p))ˆ2 ...

+ 
(instary(indx,indy)-data(2,p))ˆ2);

end
end

Contd.



MATLAB Code for SOFM MATLAB Code for SOFM 
line([instarx(i,j),instarx(nb(k,2),nb(k,3)

)],...

[instary(i,j),instary(nb(k,2),nb(k,3)
)]);

end
end

end
end
drawnow
if count == 200
nbd = nbd - contractnbd;

if (nbd < 1) nbd = 1;
end
count = 0;
end
end

for i=1:maxneuron
plot(instarx(i,:),instary(i,:),’b.’);

end
for i=1:maxneuron
for j=1:maxneuron
nb=[1 i-1 j
2 i+1 j
3 i j-1
4 i j+1];
for k=1:4

if((nb(k,2)>=1)&(nb(k,2)<=maxneur
on)&(nb(k,3)>=1)...

&(nb(k,3)<=maxneuron))



Operational Summary of the Operational Summary of the 
SOFM AlgorithmSOFM Algorithm



Applications of the SelfApplications of the Self--organizing organizing 
MapMap

Vector quantization
Neural phonetic typewriter
Control of robot arms



Iris Pattern ClassificationIris Pattern Classification



Iris Pattern ClassificationIris Pattern Classification



Software on the WebSoftware on the Web
Simulation performed with the SOFM 
MATLAB Toolbox available from 
www.cis.hut.fi/projects/somtoolbox
Modified version of the program som
demo2 used to generate the figures 
shown in this simulation.
More applications, see text.


