
Copyright © 2004
Tata McGraw Hill Publishing Co.

Neural Networks: A Classroom Approach
Satish Kumar

Department of Physics & Computer Science
Dayalbagh Educational Institute (Deemed University)

Chapter 12Chapter 12

Towards the SelfTowards the Self--
Organizing Feature Organizing Feature
MapMap

Properties of Stochastic DataProperties of Stochastic Data
Impinging inputs comprise a stream of
stochastic vectors that are drawn from a
stationary or non-stationary probability
distribution
Characterization of the properties of the input
stream is of paramount importance

simple average of the input data
correlation matrix of the input vector stream

Properties of Stochastic DataProperties of Stochastic Data
Stream of stochastic data vectors:

Need to have complete information about the
population in order to calculate statistical quantities
of interest
Difficult since the vectors stream is usually drawn
from a real-time sampling process in some
environment

Solution:
Make do with estimates which should be computed
quickly and be accurate such that they converge to
the correct values in the long run

SelfSelf--OrganizationOrganization
Focus on the design of self-organizing systems
that are capable of extracting useful
information from the environment
Primary purpose of self-organization:

the discovery of significant patterns or invariants
of the environment without the intervention of a
teaching input

Implementation: Adaptation must be based on
information that is available locally to the
synapse—from the pre- and postsynaptic
neuron signals and activations

Principles of SelfPrinciples of Self--OrganizationOrganization
Self-organizing systems are based on
three principles:

Adaptation in synapses is self-reinforcing
LTM dynamics are based on competition
LTM dynamics involve cooperation as well

HebbianHebbian LearningLearning
Incorporates both exponential
forgetting of past information and
asymptotic encoding of the product of
the signals

The change in the weight is dictated by
the product of signals of the pre- and
postsynaptic neurons

Why is Why is HebbianHebbian Learning Useful?Learning Useful?
A single linear unit using Hebbian
learning can extract the dominant eigen-
direction of the correlation matrix of an
input vector stream that comprises
patterns drawn from some unknown
probability distribution

Linear Neuron and Discrete Time Linear Neuron and Discrete Time
FormalismFormalism

xk
1x1

y yk…
wk

1

wk
2

wk
n

w2

w1

wn

…

x2 S=XTW xk
2 S=Xk

TWk… …
xn xk

n

(a) A linear neuron (b) Discrete time formalism

Activation and Signal ComputationActivation and Signal Computation

Input vector X is assumed to be drawn
from a stationary stochastic distribution
X = (x1

k, . . . , xn
k)T ,W = (w1

k, . . . ,wn
k)T

Continuous
Discrete

Vector Form of Simple Vector Form of Simple HebbianHebbian
LearningLearning

The learning law
perturbs the weight
vector in the direction
of Xk by an amount
proportional to

the signal, sk, or
the activation yk (since
the signal of the linear
neuron is simply its
activation)

One can interpret the Hebb
learning scheme of as adding
the impinging input vector to

the weight vector in direct
proportion to the similarity

between the two

Points worth noting…Points worth noting…
A major problem arises with the magnitude of
the weight vector—it grows without bound!
Patterns continuously perturb the system
Equilibrium condition of learning is identified
by the weight vector remaining within a
neighbourhood of an equilibrium weight vector
The weight vector actually performs a
Brownian motion about this so-called
equilibrium weight vector

Some AlgebraSome Algebra
Re-arrangement of the learning law:

Taking expectations of both sides

Equilibrium ConditionEquilibrium Condition
denotes the equilibrium weight vector: the

vector towards the neighbourhood of which weight
vectors converge after sufficient iterations elapse
Define the equilibrium condition as one such
condition that weight changes must average to
zero:

Shows that is an eigenvector of R corresponding
to the degenerate eigenvalue λnull = 0

EigenEigen--decomposition of the Weight decomposition of the Weight
VectorVector

In general, any weight vector can be expressed
in terms of the eigenvectors:

Wnull is the component of W in the null
subspace, ηi, ηj’ are eigenvectors corresponding
to non-zero and zero eigenvalues respectively

Average Weight PerturbationAverage Weight Perturbation

ith eigenvalue

Kernel term
goes to zero

Consider a small perturbation
about the equilibrium:

Expressing the perturbation
using the eigen-decomposition:

Substituting back yields:

Searching the Maximal Searching the Maximal EigendirectionEigendirection
represents an unstable

equilibrium
Dominant direction of
movement is the one
corresponding to the
largest eigenvalue, and
these components must
therefore grow in time
Weight vector magnitude w
grows indefinitely
Direction approaches the
eigenvector corresponding
to the largest eigenvalue

Small perturbations cause
weight changes to occur in

directions away from that of
towards eigenvectors

corresponding to
non-zero eigenvalues

Oja’sOja’s RuleRule
Modification to the simple Hebbian
weight change procedure

Can be re-cast into a
different form to
clearly see the
normalization

ReRe--compute the Average Weight compute the Average Weight
ChangeChange

Compute the expected
weight change
conditional on Wk

Setting E[Wk] to zero
yields the equilibrium
weight vector

Define

Shows that

Ŵ

Self-normalizing!

Maximal Maximal EigendirectionEigendirection is the only is the only
stable direction…stable direction…

Conducting a small neighbourhood analysis as
before:

Then the average weight change is:

Compute the component of the average weight
change E[∆W] along any other eigenvector, ηj
for j≠i clearly shows that the

perturbation
component along ηj
must grow if λj > λi

Operational Summary for Simulation Operational Summary for Simulation
of of Oja’sOja’s rulerule

MATLAB Code for MATLAB Code for Oja’sOja’s RuleRule
plot(inputnew(1,:),inputnew(2,:),'.k'); % Plot

scatter
axis equal
grid on

eta=0.15; % Initialize learning rate
w=[.1;.5]; % and the weights

for epoch=1:15 % We'll do 15 epochs
for i=1:500

% Compute activation
s = inputnew(:,i)' * w;

% Update weights
w = w + eta * s * (input(:,i) - s*w);

% Plot weight point
plot(w(1),w(2),'.','markersize',10); end

end

x=0.5*randn(500,1); % Generate X scatter
y=0.05*randn(500,1); % Generate Y scatter
input=[x';y']; % Create input data

matrix
theta = 0;
r=[cos(theta) -sin(theta)

sin(theta) cos(theta)];
inputnew=r*input;

xshift=0;
yshift=0;

for i=1:500
inputnew(1,i)=inputnew(1,i)+xshift;
inputnew(2,i)=inputnew(2,i)+yshift;

End

figure
hold on
zoom on

Simulation of Simulation of Oja’sOja’s RuleRule

Principal Components AnalysisPrincipal Components Analysis
Eigenvectors of the correlation matrix of the input data
stream characterize the properties of the data set
Represent principal component directions (orthogonal
directions) in the input space that account for the data’s
variance
High dimensional applications:

possible to neglect information in certain less important
directions
retaining the information along other more important
ones
reconstruct the data points to well within an acceptable
error tolerance.

Subspace DecompositionSubspace Decomposition
To reduce dimension

Analyze the correlation matrix R of the
data stream to find its eigenvectors and
eigenvalues
Project the data onto the eigendirections.
Discard n–m components corresponding to n–
m smallest eigenvalues

Sanger’s RuleSanger’s Rule
m node linear neuron network that accepts n-dimensional
inputs can extract the first m principal components

Sanger’s rule reduces to Oja’s learning rule for a single
neuron
Searches the first (and maximal) eigenvector or first
principal component of the input data stream
Weight vectors of the m units converge to the first m
eigenvectors that correspond to eigenvalues λ1 ≥ λ2 ≥… ≥ λm

Generalized Learning LawsGeneralized Learning Laws
Generalized forgetting laws take the form:

Assume that the impinging input vector X ∈ℜn

is a stochastic variable with stationary
stochastic properties; W∈ℜn is the neuronal
weight vector, and φ(·) and γ (·) are possibly
non-linear functions of the neuronal signal
Assume X is independent of W

Questions to AddressQuestions to Address
What kind of information does the
weight vector asymptotically encode?
How does this information depend on the
generalized functions φ(·) and γ (·) ?

Two Laws to AnalyzeTwo Laws to Analyze
Adaptation Law 1

A simple passive decay of weights proportional to
the signal, and a reinforcement proportional to the
external input:

Adaptation Law 2
The standard Hebbian form of adaptation with
signal driven passive weight decay:

Analysis of Adaptation Law 1Analysis of Adaptation Law 1

Since X is stochastic (with stationary
properties), we are interested in the
averaged or expected trajectory of the
weight vector W
Taking the expectation of both sides:

An Intermediate ResultAn Intermediate Result

Asymptotic AnalysisAsymptotic Analysis
Note that the mean is a constant
We are interested in the average angle
between the weight vector and the
mean:

Asymptotic AnalysisAsymptotic Analysis

where in the end we have employed the Cauchy–Schwarz inequality. Since dcosθ/dt

is non-negative, θ converges uniformly to zero, with dcosθ/dt = 0 iff and W have

the same direction. Therefore, for finite and W, the weight vector direction

converges asymptotically to the direction of .

X
X

X

Analysis of Adaptation Law 2Analysis of Adaptation Law 2

Taking the expectation of both sides
conditional on W

Fixed points of Fixed points of WW
To find the fixed points, set the expectation
of the expected weight derivative to zero:

From where

Clearly, eigenvectors of R are fixed point
solutions of W

All All EigensolutionsEigensolutions are not Stableare not Stable
The ith solution is the eigenvector ηi of R with
corresponding eigenvalue

Define θi as the angle between W and ηi ,
and analyze (as before) the average
value of rate of change of cos θi ,
conditional on W

Asymptotic AnalysisAsymptotic Analysis

Contd.

Asymptotic AnalysisAsymptotic Analysis

Asymptotic AnalysisAsymptotic Analysis
It follows from the
Rayleigh quotient that
the parenthetic term is
guaranteed to be
positive only for λi = λmax,
which means that for
the eigenvector ηmax the
angle θmax between W
and ηmax monotonically
tends to zero as learning
proceeds

First Limit TheoremFirst Limit Theorem
Let α > 0, and s = XTW. Let γ (s) be an arbitrary scalar
function of s such that E[γ (s)] exists. Let X(t) ∈ ℜn be
a stochastic vector with stationary stochastic
properties, being the mean of X(t) and X(t) being
independent ofW
If equations of the form

have non-zero bounded asymptotic solutions, then these
solutions must have the same direction as that of

X

X

Second Limit TheoremSecond Limit Theorem
Let α, s and γ (s) be the same as in Limit
Theorem 1. Let R = E[XXT] be the correlation
matrix of X. If equations of the form :

have non-zero bounded asymptotic solutions,
then these solutions must have the same
direction as ηmax where ηmax, is the maximal
eigenvector of R with eigenvalue λmax, provided
ηT

maxW(0) = 0

Competitive Neural NetworksCompetitive Neural Networks
Competitive networks

cluster
encode
classify

data by identifying
vectors which logically belong to the same
category
vectors that share similar properties

Competitive learning algorithms use competition
between lateral neurons in a layer (via lateral
interconnections) to provide selectivity (or
localization) of the learning process

Types of CompetitionTypes of Competition
Hard competition

exactly one neuron—the one with the largest
activation in the layer—is declared the
winner
ART 1 F2 layer

Soft competition
competition suppresses the activities of all
neurons except those that might lie in a
neighbourhood of the true winner
Mexican Hat Nets

Competitive Learning is LocalizedCompetitive Learning is Localized
CL algorithms employ localized learning

update weights of only the active neuron(s)
CL algorithms identify codebook vectors
that represent invariant features of a
cluster or class

Vector QuantizationVector Quantization
If many patterns Xk cause cluster neuron j to
fire with maximum activation a codebook
vector Wj = (w1j , . . . ,wnj)T behaves like a
quantizing vector
Quantizing vector : representative of all
members of the cluster or class
This process of representation is called vector
quantization
Principal Applications

signal compression
function approximation
image processing

Competitive Learning NetworkCompetitive Learning Network

1 j mj2

1 i n

Cluster Units

…………. ………….

………….………….

wij wnjw1j
Codebook Vectors

xk
j xk

nxk
1

xk

Example of CLExample of CL
Three clusters of vectors
(denoted by solid dots)
distributed on the unit
sphere
Initially randomized
codebook vectors (crosses)
move under influence of a
competitive learning rule to
approximate the centroids
of the clusters
Competitive learning
schemes use codebook
vectors to approximate
centroids of data clusters

Principle of Competitive LearningPrinciple of Competitive Learning
Given a sequence of stochastic vectors
Xk ∈ ℜn drawn from a possibly unknown
distribution, each pattern Xk is compared
with a set of initially randomized weight
vectors Wj ∈ ℜn and the vector WJ which
best matches Xk is to be updated to
match Xk more closely

Inner Product Inner Product vsvs Euclidean Distance Euclidean Distance
Based CompetitionBased Competition

Inner Product

Euclidean Distance Based Competition

Two sides of the same coin!Two sides of the same coin!
Assume: weight vector equinorm property

Generalized CL LawGeneralized CL Law
For an n - neuron competitive network

Vector Quantization RevisitedVector Quantization Revisited
An important application of competitive
learning
Originally developed for information
compression applications
Routinely employed to store and transmit
speech or vision data.
VQ places codebook vectors Wi into the signal
space in a way that minimizes the expected
quantization error

Example: Example: VoronoiVoronoi TesselationTesselation
Depict classification
regions that are formed
using the 1-nearest
neighbour classification
rule
Voronoi bin specified by
a codebook vector WJ is
simply the set of points
in Rn whose nearest
neighbour of all Wj is
WJ a Euclidean distance
measure

20 randomly generated
Gaussian distributed points
using the MATLAB voronoi
command

Unsupervised Vector QuantizationUnsupervised Vector Quantization

Xk Yk

j C1

1 n n+m…………. ………….

………….………….

xk
nxk

1

n+1

yk
myk

1

Zk

Unsupervised VQUnsupervised VQ
Compares the current random sample
vector Zk = (Xk | Yk) with the C
quantizing weight vectors Wj (k) (weight
vector Wj at time instant k)
Neuron J wins based on a standard
Euclidean distance competition

Unsupervised VQ LearningUnsupervised VQ Learning
Neuron J learns the input pattern in
accordance with standard competitive learning
in vector form:

Learning coefficient ηk should decrease
gradually towards zero
Example: ηk = η0[1 − k/2Q] for an initial learning
rate η0 and Q training samples
Makes η decrease linearly from η0 to zero over
2Q iterations

Scaling the Data Components Scaling the Data Components
Scale data samples {Zk} such that all features
have equal weight in the distance measure
Ensures that no one variable dominates the
choice of the winner
Embedded within the distance computation:

Operational Summary of AVQOperational Summary of AVQ

Operational Summary of AVQOperational Summary of AVQ

MATLAB Simulation Example on AVQMATLAB Simulation Example on AVQ
Cluster a three dimensional data set comprising
200 data points using adaptive vector
quantization
Data points generated to be randomly and
normally distributed: 100 data points each
about centers with coordinates (0,0,0) and
(1,2,3), with a standard deviation 0.8
Cluster field assumed to comprise two neurons
with instar weights initialized to (3,0,0) and
(−2,3,5) respectively

MATLAB Simulation Example on AVQMATLAB Simulation Example on AVQ

MATLAB Code for AVQMATLAB Code for AVQ
% Program for AVQ Clustering: m clusters in n

dimensions

m = 2; % Generate two clusters
fid=fopen(’./avqtest.dat’,’r’);% Open data file
pat = fscanf(fid,’%f %f’,[3 inf]);
fclose(fid);

% dimension n, and number of data Q
[n,Q]=size(pat);

% Initial weight matrix w
w = [3 -2; 0 3; 0 5];

figure % plot the clusters
plot3(pat(1,:), pat(2,:), pat(3,:), ’b.’);
grid on;
hold on;
axis([-2 4 -2 5 -2 5]);

for i=1:Q % for each data point
% reset the minimum distance index
minindex = -1;
% set the mindist variable to a large number
mindist = 1000;

for j=1:m % check distance to each codebook
dist = 0;
for k=1:n

dist = dist + (pat(k,i)-w(k,j))ˆ2;
end
dist = sqrt(dist);
if dist < mindist

minindex = j;
mindist = dist;

end
end
eta = 0.1*(1-(i/(2*Q))); % Update learning rate
for k=1:n % update the winning weight vector
w(k,minindex) = w(k,minindex) + eta*(pat(k,i) –

w(k,minindex));
end

Supervised Vector QuantizationSupervised Vector Quantization
Suggested by Kohonen
Uses a supervised version of vector
quantization

Learning vector quantization (LVQ1)
Data classes defined in advance and each data
sample is labelled with its class

Practical Aspects of LVQ1Practical Aspects of LVQ1
0 < ηk < 1 decreases monotonically with successive
iterations
Recommended that ηk be kept small: 0.1
Vectors in a limited training set may be applied cyclically
to the system as ηk is made to decrease linearly to zero
Use an equal number of codebook vectors per class

Leads to an optimal approximation of the class borders
Initialization of codebook vectors may be done to actual
samples of each class
Define the number of iterations in advance:

Anything from 50 to 200 times the number of codebook
vectors selected for representation

Operational Summary of LVQ1 Operational Summary of LVQ1

Mexican Hat NetworksMexican Hat Networks
Closely follow biological structure
Evidence that certain two-dimensional
structures of visual cortex neurons have
lateral interactions with a connectivity pattern
that exhibits:

Short range lateral excitation within a radius of 50–
100 µm
Region of inhibitory interactions outside the area of
short range
Excitation which extends to a distance of about
200–500 µm

Mexican Hat Connectivity PatternMexican Hat Connectivity Pattern

Mexican Hat Neural NetworkMexican Hat Neural Network

1 2 j m

Connections υij

Connections wij

…

… …

l1 li ln

……

Mexican Hat Neural NetworkMexican Hat Neural Network
Every neuron in the network follows has
Mexican Hat lateral connectivity
Two distinguishing behavioural
properties:

Spatial activity across the network clusters
locally about winning neurons
Local cluster positions are decided by the
nature of the input pattern

Mexican Hat Neural NetworkMexican Hat Neural Network
Quantify the total neuronal activity for
the j th neuron as a sum of two
components:

Possibly non-linear signal function
usually the piecewise linear threshold function

Discrete Approximation to Mexican Discrete Approximation to Mexican
Hat ConnectivityHat Connectivity

Required for
simulation
A neuron receives

constant lateral
excitation from 2L
neighbours
constant lateral
inhibition from 2M
neighbours

One Dimensional Mexican Hat One Dimensional Mexican Hat
Network SimulationNetwork Simulation

Assume that index i runs over values assuming
neuron j to be centered at position 0
Signals that correspond to index values that
are out of range are simply to be disregarded
(assumed zero)
Ij = φ(j) is a smooth function of the array
index j

Generalized Difference FormGeneralized Difference Form

Note the introduction of time index k

a, b control the extent of excitation
and inhibition that a neuron receives

feedback factor γ determines the proportion of
feedback that contributes to the new activation

Neuron Signal FunctionNeuron Signal Function
Uniformly assumed
piecewise linear

One Dimensional SimulationOne Dimensional Simulation
Assume a field of 50 linear threshold
neurons
Each has a discrete Mexican Hat
connectivity pattern
Simulate the system assuming a smooth
sinusoidal input to the network:

One Dimensional SimulationOne Dimensional Simulation

(a) 15 snapshots of neuron
field updates with γ = 1.5.

(b) 15 snapshots of neuron
field updates with γ = 0.75

MATLAB Code for Mexican Hat MATLAB Code for Mexican Hat
NetworkNetwork
% Mexican Hat Network Simulation

leradius = 5; % excitation radius
liwidth = 10; % inhibition radius
interactlen = leradius + liwidth +1;
max = 10; % maximum signal value
excit = 0.1; % a
inhibit = -0.05;% b
feedback = 1.5; % gamma
for j=1:50 % Generate the Mex hat connectivity

for i=1:50 % 50 x 50 weights
indexdif = abs(j-i);
if (indexdif < interactlen)

if (indexdif < leradius+1)
w(j,i) = excit;

else
w(j,i) = inhibit;

end
else
w(j,i) = 0;

end
end

end

index=1:1:50;
input = sin(pi.*index/50);% set up input vector
s=zeros(50); % initialize signals
figure;
hold on

for t=1:15
for i =1:50 % compute activations

activation(i) = input(i);
for j=1:50

activation(i) = activation(i) +
feedback*w(j,i)*s(j);

end
end
for i=1:50 % compute signals
if (activation(i) > max) s(i) = max;
elseif (activation(i) < 0) s(i) = 0;
else s(i) = activation(i);
end

end
plot(index, s);

end
xlabel(’Neuron index’); ylabel(’Signal strength’);

Two Dimensional Mexican Hat Two Dimensional Mexican Hat
Network SimulationNetwork Simulation

(a) Mexican hat connectivity portrayed
for the central neuron in a
30 × 30 planar neuron field

(b) Two dimensional Gaussian input
assumed for the simulation of the planar
Mexican hat network

Two Dimensional Mexican Hat Two Dimensional Mexican Hat
Network SimulationNetwork Simulation

Two Dimensional Mexican Hat Two Dimensional Mexican Hat
Network SimulationNetwork Simulation

Two Dimensional Mexican Hat Two Dimensional Mexican Hat
Network SimulationNetwork Simulation

SelfSelf--Organizing Feature MapsOrganizing Feature Maps
Dimensionality reduction + preservation of
topological information common in normal
human subconscious information processing
Humans

routinely compress information by extracting
relevant facts
develop reduced representations of impinging
information while retaining essential knowledge

Example: Biological vision
Three dimensional visual images routinely mapped
onto a two dimensional retina
Information preserved to permit perfect
visualization of a three dimensional world

Purpose of Intelligent Information Purpose of Intelligent Information
Processing (Processing (KohonenKohonen))

Lies in the creation of simplified internal
representations of the external world at
different levels of abstraction

Computational MapsComputational Maps
Early evidence for computational maps comes
from the studies of Hubel and Wiesel on the
primary visual cortex of cats and monkeys
Specialized sensory areas of the cortex
respond to the available spectrum of real world
signals in an ordered fashion
Example:

Tonotonic map in the auditory cortex is perfectly
ordered according to frequency

A Hierarchy of MapsA Hierarchy of Maps

Primary map

Sequence of
temporal
processing

retains fine grained topological
ordering as present in the
original sensory signals

Secondary map

Tertiary map

Topology PreservationTopology Preservation
Kohonen

“ . . . it will be intriguing to learn that an
almost optimal spatial order, in relation to
signal statistics can be completely
determined in simple self-organizing
processes under control of received
information”

Topological MapsTopological Maps
Topological maps preserve an order or a
metric defined on the impinging inputs
Motivated by the fact that
representation of sensory information in
the human brain has a geometrical order
The same functional principle can be
responsible for diverse (self-organized)
representations of information—possibly
even hierarchical

One Dimensional Topology Preserving One Dimensional Topology Preserving
MapMap

m-neuron neural network
ith neuron produces a response si

k in
response to input Ik ∈ ℜn

Input vectors {Ik} are ordered
according to some distance metric or
in some topological way I1 R I2 R I3 . . .
, where R is some ordering relation

One Dimensional Topology Preserving One Dimensional Topology Preserving
MapMap

Then the network produces a one
dimensional topology preserving map if
for i1 > i2 > i3

SelfSelf--Organizing Feature MapOrganizing Feature Map
Finds its origin in the seminal work of
von der Malsburg on self-organization
Basic idea:

In addition to a genetically wired visual
cortex there has to be some scope for self-
organization of synapses of domain sensitive
neurons to allow a local topographic ordering
to develop

SelfSelf--Organizing Feature Map: Organizing Feature Map:
Underlying IdeasUnderlying Ideas

Unsupervised learning process
Is a competitive vector quantizer
Real valued patterns are presented sequentially to a linear or
planar array of neurons with Mexican hat interactions
Clusters of neurons win the competition
Weights of winning neurons are adjusted to bring about a better
response to the current input
Final weights specify clusters of network nodes that are
topologically close

sensitive to clusters of inputs that are physically close in the input
space

Correspondence between signal features and response locations
on the map

spatial location of a neuron in the array corresponds to a specific
domain of inputs

Preserves the topology of the input

SOFM Network ArchitectureSOFM Network Architecture

RequirementsRequirements
Distance relations in high dimensional spaces
should be approximated by the network as the
distances in the two dimensional neuronal field:

input neurons should be exposed to a sufficient
number of different inputs
only the winning neuron and its neighbours adapt
their connections
a similar weight update procedure is employed on
neurons which comprise topologically related subsets
the resulting adjustment enhances the responses to
the same or to a similar input that occurs
subsequently

NotationNotation
Each neuron is identified
by the double row–column
index ij, i, j = 1, . . . ,m
The ij th neuron has an
incoming weight vector
Wij (k) = (wk

1,ij , . . . ,wk
n,ij)

NeighbourhoodNeighbourhood ComputationComputation
Identify a neighbourhood NIJ around the
winning neuron
Winner identified by minimum Euclidean
distance to input vector:

Neighbourhood is a function of time: as
epochs of training elapse, the
neighbourhood shrinks

NeighbourhoodNeighbourhood ShapesShapes

* * * * * * *

*

*

 *

 *

* * * *

*

*

 *

 *

* * *

* * * *

* *

*
 *

 *

* * *

* *

*
 *

#*
 *

* * *

* *

* * *
*

r=2
r=1

r=0

* * * * * * *
* * * * * * *

* * * * * * *

* * * * * * *
* * * * * * *

* * * * * * *

* * * # * * *

r=2
r=1

r=0

Square neighbourhood Hexagonal neighbourhood

Adaptation in SOFMAdaptation in SOFM
Takes place according to the second
generalized law of adaptation

γ (sij) may be chosen to be linear

Choosing η = β

SOFM AdaptationSOFM Adaptation
Continuous time

Discrete time

Some ObservationsSome Observations
Ordering phase (initial period of adaptation) : learning
rate should be close to unity
Learning rate should be decreased linearly,
exponentially or inversely with iteration over the first
1000 epochs while maintaining its value above 0.1
Convergence phase: learning rate should be maintained
at around 0.01 for a large number of epochs

may typically run into many tens of thousands of
epochs

During the ordering phase Nk
IJ shrinks linearly with k

to finally include only a few neurons
During the convergence phase Nk

IJ may comprise only
one or no neighbours

Simulation ExampleSimulation Example

The data employed in the
experiment comprised
500 points distributed
uniformly over the bipolar
square [−1, 1] × [−1, 1]

The points thus describe
a geometrically square
topology

SOFM SimulationSOFM Simulation

SOFM SimulationSOFM Simulation

SOFM SimulationSOFM Simulation

Simulation NotesSimulation Notes
Initial value of the neighbourhood radius r = 6

Neighbourhood is initially a square of width 12
centered around the winning neuron IJ

Neighbourhood width contracts by 1 every 200
epochs
After 1000 epochs, neighbourhood radius
maintained at 1

Means that the winning neuron and its four adjacent
neurons are designated to update their weights on
all subsequent iterations
Can also let this value go to zero which means that
eventually, during the learning phase only the winning
neuron updates its weights

MATLAB Code for SOFMMATLAB Code for SOFM
[val1,rows]=min(dist);
[val2,cols]=min(val1);
indxmin=rows(cols);
indymin=cols;
for i=indxmin-nbd:indxmin+nbd
for j=indymin-nbd:indymin+nbd
if((i >=
1)&(i<=maxneuron)&(j>=1)&(j<=max
neuron))

instarx(i,j)=instarx(i,j)+eta*(data(
1,p)-instarx(i,j));

instary(i,j)=instary(i,j)+eta*(data(
2,p)-instary(i,j));

end
end

end
end

for epoch = 1:numpats*maxneuron
count = count + 1;
eta=0.9*(1 - epoch/1000);
if (epoch > 999) eta = 0.005;
end

for p= 1:numpats
for indx = 1:maxneuron
for indy = 1:maxneuron

dist(indx,indy)=sqrt((instarx(indx,
indy)-data(1,p))ˆ2 ...

+
(instary(indx,indy)-data(2,p))ˆ2);

end
end

Contd.

MATLAB Code for SOFM MATLAB Code for SOFM
line([instarx(i,j),instarx(nb(k,2),nb(k,3)

)],...

[instary(i,j),instary(nb(k,2),nb(k,3)
)]);

end
end

end
end
drawnow
if count == 200
nbd = nbd - contractnbd;

if (nbd < 1) nbd = 1;
end
count = 0;
end
end

for i=1:maxneuron
plot(instarx(i,:),instary(i,:),’b.’);

end
for i=1:maxneuron
for j=1:maxneuron
nb=[1 i-1 j
2 i+1 j
3 i j-1
4 i j+1];
for k=1:4

if((nb(k,2)>=1)&(nb(k,2)<=maxneur
on)&(nb(k,3)>=1)...

&(nb(k,3)<=maxneuron))

Operational Summary of the Operational Summary of the
SOFM AlgorithmSOFM Algorithm

Applications of the SelfApplications of the Self--organizing organizing
MapMap

Vector quantization
Neural phonetic typewriter
Control of robot arms

Iris Pattern ClassificationIris Pattern Classification

Iris Pattern ClassificationIris Pattern Classification

Software on the WebSoftware on the Web
Simulation performed with the SOFM
MATLAB Toolbox available from
www.cis.hut.fi/projects/somtoolbox
Modified version of the program som
demo2 used to generate the figures
shown in this simulation.
More applications, see text.

