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Pulsed Neuron Pulsed Neuron 
Models: The New Models: The New 
GenerationGeneration



Biological PlausibilityBiological Plausibility
Artificial neuron models are simplified versions 
of their biological counterpart 
However, to exploit the real power of the brain 
metaphor in intelligent systems, biological 
accuracy must be improved in the basic model 
of the neuron
Neuron models which incorporate biologically 
realistic properties of neuron behavior include

Spiking neuron model
Conductance based models (Hodgkin-Huxley model) 



Biological NeuronBiological Neuron

Presynaptic action potentials fired along axon of neuron j evoke  
postsynaptic potentials (PSP) in the dendrite of neuron i
Cell soma integrates spatio-temporal PSPs and if the cell potential 
exceeds a threshold Vθ, neuron i fires an action potential 



Spiking Neuron ModelSpiking Neuron Model
Basic idea: represent each PSP by a kernel 
function and superpose various such functions 
appropriately depending upon the firing times 
and physical locations of presynaptic neurons 
The set of firing times of a presynaptic neuron 
j is 

With    as the most recent firing time of the 
neuron.  When the neuron’s cell potential vj(t)
equals threshold Vθ, it fires.

firing times where k 
indexes the time 

n
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PSP Kernel FunctionsPSP Kernel Functions
Assumption: time course of the PSP is described by 
a kernel function κji which must vanish before the 
firing time    of the presynaptic neuron j

Axonal and synaptic transmission delays can be 
designed by introducing an axonal time delay ∆

This equation assumes 
that presynaptic neuron 
fires at t = 0

Time constants that control the rise and fall of the function

k
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Examples of PSP Kernel FunctionExamples of PSP Kernel Function
(a)  Excitatory postsynaptic 

potential (EPSP) kernel 
function

(b) Kernel function with 
axonal
time delay

Inhibitory postsynaptic
potential (IPSP) can be
generated by reversing the
sign of the kernel function



Introducing Weight Introducing Weight 
Appropriately scales the PSP kernel to account for any 
attenuation effects occurring due to the variable synaptic 
efficacy and the distance of synapse from the cell soma
Negative weight will generate an IPSP and a positive 
weight an EPSP
EPSP or IPSP will either increase or decrease the 
postsynaptic soma potential by an amount that depends on 
the magnitude and sign of the synaptic efficacy
Various PSPs superposed in a weighted summation decide 
the actual time course for the cell potential



Relative Locations of Synapses and Relative Locations of Synapses and 
Firing SequenceFiring Sequence

The time course of the cell potential 
depends on two factors

the relative location and efficacy of the 
synapses of firing presynaptic neurons
the sequence in which the presynaptic
neurons fire



Relative Locations of Synapses and Relative Locations of Synapses and 
Firing SequenceFiring Sequence

Assumptions
synapses A, B, and C are all excitatory
they all have the same kernel function



Time Course of Synapses A, B and CTime Course of Synapses A, B and C
Synapse A receives a 
spike at t = 0; synapse 
B at t = 0.4; synapse C
at t = 0.8
The selection of firing 
times imply a firing 
sequence  A → B →C



Firing Sequence Firing Sequence A A →→ B B →→ CC

The neuron does not fire an action potential 
for the cell’s threshold of 0.7 



Firing Sequence Firing Sequence C C →→ B B →→ AA

In this case the neuron fires! 



Kernel ResetKernel Reset
Once the cell potential reaches the threshold, 
the cell potential undergoes a reset to model the 
refractory nature of the firing of an action 
potential
Introducing another kernel function             adds 
a negative contribution to the cell potential at 
time    and resets it to the resting value
An example refractory function

time constant controls
the rate of fall of the 
exponential
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Spike Response Model of neuronSpike Response Model of neuron
The introduction of the refractory function 
modifies the cell  potential  to

Assuming that only the most recent spike 
fired by neuron i contributes a refractory 
function

reset kernel weighted PSP kernels



Kernel Function as a Dynamic Kernel Function as a Dynamic 
ThresholdThreshold

The next spike will occur when the given cell 
potential equals the threshold

dynamic 
threshold



Kernel Function as a Dynamic Kernel Function as a Dynamic 
ThresholdThreshold

After the most
recent firing time,
threshold suddenly
increases from
Vθ to 2Vθ making
it more difficult
for neuron to fire

As threshold
gradually decays
back to its resting
value Vθ , the
possibility of neuron
firing increases thus
modeling the 
refractory nature of
neuron firing



Spike Response Model: General VersionSpike Response Model: General Version
In reality:

A neuron fires a spike whenever its cell potential 
crosses the threshold value
The potential of the cell continues to rise to a peak 
and then falls suddenly to undershoot its resting 
value.
It then gradually decays towards its resting value

Spike after-potential crosses threshold twice
once on the way up to the peak
once on the way down to the undershoot 



Spike Response Model: General VersionSpike Response Model: General Version
The entire time course of the spike after-potential 
can be described by the kernel function

The shape of the after-potential in the cell and 
the action potential generated is almost the same

This ensures that a firing time is recorded
only when the spike crosses the threshold
on the way up to the peak



RefractorinessRefractoriness
Absolute refractory period – no other 
spike can be fired while the action 
potential rises or falls
Relative refractory period – difficulty in 
firing for the neuron during the 
undershoot
Refractoriness decides the maximum 
frequency at which a neuron can fire 
spikes



Accounting for RefractorinessAccounting for Refractoriness
When both the refractory periods are introduced 
into the Spike Response model, the reset kernel 
function becomes

where

Negative going pulse of magnitude –R
(absolute refractory period) 

An exponential that decays from –R0 delayed
In time by ∆R

k
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Accounting for RefractorinessAccounting for Refractoriness
The kernel function                  
has a large negative pulse 
followed by an exponential 
decay
Assume:

all EPSPs and IPSPs have 
identical shapes and their 
amplitude and sign is 
decided by the 
premultiplying Wji

Cell potential can be 
written as

)~(tiγ



Integrate and Fire (IF) NeuronsIntegrate and Fire (IF) Neurons

Simple and powerful spiking neuron model
Various versions based on sub-threshold 
operation and a potential threshold for 
spike generation, motivated from an 
electrical model of the neuron membrane
Two types

Ideal non-leaky IF neuron
Ideal leaky IF neuron



NonNon--leaky IF Neuronleaky IF Neuron
Capacitor is responsible for 
sub-threshold generation
For constant I capacitor 
voltage increases linearly in 
time.
When capacitor voltage 
equals threshold Vθ, neuron 
is assumed to fire an output 
pulse
This initiates a reset action 
that brings the capacitor 
voltage back to the rest 
value (assumed to be zero)

Electrical model of an integrate and fire neuron

Time dependence of 
the capacitor voltage

Assuming the current 
to be constant

This current charges
the capacitor

A switch that models
the reset action by 
short circuiting the
capacitor



NonNon--leaky IF Neuronleaky IF Neuron
Voltage waveform of cell potential Vi(t)

Charge that accumulates 
between two firing times 
is CVθ

Any arbitrarily small input 
current will increase the 
charge of the capacitor 
and will eventually cause 
the capacitor to reach the 
threshold causing the 
neuron to fire.
No forgetting of 
information 

The time to spike Ti is

assuming that neuron 
starts from zero potential.
So neuron firing frequency

When  neuron current
varies in time, successive
occurrence of spikes
can be computed from 



NonNon--leaky IF Neuronleaky IF Neuron
The absolute refractory period is modelled by 
setting the capacitor voltage to zero for fixed time 
∆R immediately following spike generation. Any 
current that is coming during this time interval is 
shunted by the  switch opened after a time
This has the effect of reducing the frequency of 
generation spikes as 



Leaky IF NeuronLeaky IF Neuron
In reality, the  neuron 
membranes leak and so 
the cell potential has a 
tendency to decay back 
towards its resting 
value
A leakage resistance in 
parallel with the 
capacitor models this 
aspect

Electrical model of a leaky IF neuron

Resistor allows the 
capacitor voltage to
discharge with a time
constant 

Capacitor voltage is

τm → membrane time constant



Leaky IF NeuronLeaky IF Neuron
The cell potential becomes

In the absence of inputs, capacitor voltage will decay to zero.
A spike is fired once voltage crosses threshold and the neuron goes 
into reset condition; switch is closed and capacitor voltage is short 
circuited to zero
Now, small currents will not be able to charge capacitor fast enough 
to overcome the leakage through resistance. There has to be a 
minimum constant current, threshold current Iθ which satisfy the 
condition                                                       

Only currents larger than Iθ are capable of generating spikes

Leakage term: initial voltage
across the capacitor leaks to
zero

Capacitor charges up to its asymptotic value 

IR exponentially with time constant τm



Leaky IF NeuronLeaky IF Neuron
Starting from reset condition, a spike will occur at a time Ti 
such that 

Firing frequency of leaky IF neuron becomes

To model refractoriness, it is assumed that after a spike is 
generated any input currents are shunted out by the switch 
for a fixed time interval ∆R



External CurrentExternal Current
Note: external current I(t) is to be 
generated by the pulses of other 
presynaptic neurons in a network
Assumption: form of spikes in the IF class 
of models is the delta function δ(⋅)
Input current as a function of presynaptic
firings of delta functions 

Quantum of charge deposited on the
capacitor from presynaptic neuron j
to postsynaptic neuron i



External CurrentExternal Current
Replacing the δ(⋅) functions with current 
pulses of finite width changes current to

One of the various forms of above α
functions is  

time constant of the order of
few milliseconds

axonal transmission delay



External CurrentExternal Current
Current form is chosen to model the low pass 
characteristics of a synapse with simple exponential 
decay

The current thus is

Note the correspondence between external current 
and finite pulse width current 



IF Neuron Model: A Special IF Neuron Model: A Special 
Case of Spiking Neuron ModelCase of Spiking Neuron Model

Reset of cell potential after firing time     can be 
modelled by assuming an outgoing δ-current pulse

Capacitor voltage for IF neuron becomes

k
it

Resting potential of the neuron

Each time neuron fires, this quantum 
of charge will be removed from 
capacitor causing neuron to reset



IF Neuron Model: A Special IF Neuron Model: A Special 
Case of Spiking Neuron ModelCase of Spiking Neuron Model

Assuming constant input current                and considering only 
the last firing time of neuron i makes the capacitor voltage

Assuming the input current as a function of current pulses of 
finite width, capacitor voltage can be recast into

ItI I
i =)(

Assuming vr=0, this term makes the cell potential decrease suddenly at the instant 

of firing by Vθ .This decrement gradually decays to zero with time constant τm

Spiking neuron model form!



IF Neuron Model: A Special IF Neuron Model: A Special 
Case of Spiking Neuron ModelCase of Spiking Neuron Model

Assuming the input current as a function of current pulses of 
finite width, capacitor voltage can be recast into

where

Spiking neuron 
model form!

Hence IF neuron model is a
special case of the spiking
neuron model



Conductance Based ModelsConductance Based Models
Models based on the actual workings of excitable 
membranes
Dynamic nature of membrance conductances that 
take place during an action potential have been 
understood from two fundamental techniques 
the space clamp and voltage clamp
In an axon, the membrane potential is 
determined by three conductances

Voltage dependent leak conductance gL
Voltage dependent sodium conductance gNa
Voltage dependent potassium conductance gK



HodgkinHodgkin--Huxley Model of an AxonHuxley Model of an Axon
Based on an 
electrical 
equivalent 
circuit that 
incorporates 
a capacitance 
with three 
conductances



Electrical Equivalent Circuit of Electrical Equivalent Circuit of 
Axonal MembraneAxonal Membrane

The current flow across the membrane has two 
major components: one that charges membrane 
capacitance and other that is generated by the 
movement of specific ions across the membrane
The latter ionic current include 3 components

A sodium current INa
Potassium current Ik
A small leakage current by chloride ions IL

Currents are assumed to be controlled by 
batteries ENa , EK , EL that correspond to the 
equilibrium potentials for each of the ions



Electrical Equivalent Circuit of Electrical Equivalent Circuit of 
Axonal MembraneAxonal Membrane

The batteries for ENa and EK are placed in 
series with variable conductances gNa ,gK
and the battery for EL is placed in series 
with a passive conductance gL

KCL at the inside node is 
Hodgkin-Huxley equation describing the 
circuit is



Gating the Channel AccessGating the Channel Access
Hodgkin and Huxley suggested a simple model 
to account for voltage sensitivity of the sodium 
and potassium conductances with the following 
assumptions:

Each channel has two conducting states – an open 
state in which ions are free to cross through the 
pore, and a closed state in which the pore is blocked
Many individual ion channels with small ionic 
conductances determine the measurable behaviour
of the whole membrane



Gating the Channel AccessGating the Channel Access
Channels behave as though free passage through the 
pore were controlled by different gates
Any gate can be in one of two states – permissive or 
non-permissive

When all gates for a channel are in permissive state, the 
channel is open and ions can pass through it
If any one of the gates is in non-permissive state, ions 
cannot flow and the channel is closed

A change in membrane potential alters the probability p 
of an individual gate to be in the permissive or non-
permissive state, and thus decides whether a channel 
will be in the open or closed state



Gating the Channel AccessGating the Channel Access
P is the fraction of gates in a population of 
channels that are in the permissive state
P-1 is the fraction that are in the non-
permissive state 
When a larger fraction of the total population 
of channels is open, the total membrane 
conductance to that ion increases
The maximum conductance       for an ion is 
reached when all the channels for that ion are 
open

G



Sodium Channel Activation GatesSodium Channel Activation Gates
Assumption:Sodium channel protein with an 
activation gate comprising three identical sites



Sodium Channel Activation GatesSodium Channel Activation Gates
The sites are activated when positive charges 
attach to the sites
While the activation gate is normally closed, all 
three sites must activate for the gate to 
undergo a structural change and open
Depolarization causes positive charges residing 
on the inside surface of the membrane to 
redistribute to the outer surface, thereby 
activating the activation gate sites



Sodium Channel Activation GatesSodium Channel Activation Gates
m = (0, 1) be the probability that a particular site is active
Rate of change of probability is decided by the following

Sites that are inactive can activate 
Sites that are active can become inactive

Transition from inactive to active state is governed by a 
voltate dependent rate
Transition from active to inactive state is proportional to a 
voltage dependent rate

gives the probability that the site activates 
over a small interval of time

gives the probability that the site inactivates 
over a small interval of time

)(vmα

)(vmβ
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Sodium Channel Activation GatesSodium Channel Activation Gates
The rate of change of probability becomes

With

Rise in gNa exhibits considerable delay following 
depolarization and there is an S-shaped increase in  that can 
be explained if more that one binding site must be occupied 
by positive gating particles before the channel can open
If there are x sites, the probability of channel open would be 
proportional to mx

The actual rise in sodium conductance following a 
depolarizing step suggests that x =3 for the sodium channel 
i.e. three binding sites must be occupied by gating particles 
before the channel will conduct

Time constant

Initial and final
values of m



Sodium Channel Inactivation GatesSodium Channel Inactivation Gates
The inactivation gate normally remains open
This gate is controlled by a single site at which 
a positive gating charge is already bound, 
causing the site to be active
When the cell depolarizes, positive charges 
redistribute towards the outer membrane 
surface
When the charges detach, the site becomes 
inactive and the gate closes



Sodium Channel Inactivation GatesSodium Channel Inactivation Gates
h be the probability that the site is active
As cell undergoes depolarization, m increases and h
decreases
During hyperpolarization, m decreases and h
increases
The rate of change of probability of the 
inactivation gate to be active is

which gives

h declines exponentially
at a rate governed by the
individual rates
and

)(vmα
)(vmβ

Time constant



Sodium Channel Inactivation GatesSodium Channel Inactivation Gates
The closing of the inactivation gate is slower than the 
opening of the activation gate
The probability PNa that the sodium channel is open is 
governed by the joint probability that the activation 
and inactivation gates are simultaneously open
This is the product of the probability that the three 
sites of the activation gate and the single site of the 
inactivation gate are active together
It can be put as



Potassium Channel Activation Potassium Channel Activation 
GatesGates

For potassium ions, there is only an activation gate and 
no inactivation gate
The potassium activation gate is assumed to be normally 
closed and is opened when a requisite number of sites 
on the gate are activated
Let n be the probability of activation of a site of the 
activation gate for potassium channel
As before, the probability that the channel is open in nx

An analysis carried out for the charge in potassium 
conductance following a step depolarization suggests 
that x = 4 for the voltage sensitive potassium channel 
i.e. the rise in potassium conductance is found to be 
proportional to n4



Potassium Channel Activation Potassium Channel Activation 
GatesGates

Assumption: the channel protein has an activation 
gate comprising four identical sites, which are 
activated when positive charges attach to these 
sites
The rate of change of probability n is

which gives
The probability PK that the potassium channel is 
open is then given by the joint probability that the 
four sites are simultaneously active: 

Time constant



Difference between Potassium Difference between Potassium 
and Sodium Channelsand Sodium Channels

The time constant      is almost an order 
of magnitude smaller than      and  
This fast activation-slow inactivation for 
sodium channels along with the slower 
activation of potassium channels 
together accounts for the positive going 
action potential observed

mτ
hτ nτ



Rate ConstantsRate Constants
The sodium and potassium conductances can be modelled as 

And the rate constants after careful experimental 
procedures are as follows

Maximal sodium and 
Potassium conductances



Cable EquationCable Equation
Neuron models discussed so far focussed on sub-
threshold integration and spike generation and 
have no spatial structure
Wilfrid Rall addressed the following questions

How inputs to the neuron affect the potential in 
the soma?
How does the PSP spread through the dendritic
tree?

Result: Cable equation which describes how local 
changes in membrane potential spread along the 
dendritic branches, and how this spread depends on 
the electrical properties of the membrane



DendriticDendritic BehaviourBehaviour ≡≡ Electric Electric 
CableCable

The behaviour of dendrites is much like 
that of an electrical cable on various counts

There is an axial resistance that manifests 
itself due to the poor conducting properties of 
the axoplasm
The membrane is a leaky insulator
There is a capacitance that arises because of 
the charges that accumulate on either sides of 
the insulating membrane. This capacitance can 
be of the order of 1 µF/cm2



OneOne--dimensional Cable Theorydimensional Cable Theory
The sub-threshold operation of IF neuron was modelled
with the help of a capacitor in parallel with a resistance
It was assumed while modelling a membrane that the 
behaviour can be approximated by a series of 
compartments (capacitor-resistor combination in parallel) 
connected by axial resistances



OneOne--dimensional Cable Theorydimensional Cable Theory
KCL for a compartment is

The axial current ia that arises along an 
infinitesimal distance ∆x that causes a 
voltage drop ∆v can be written as

Membrane current

Membrane resistance

Membrane capacitance



OneOne--dimensional Cable Theorydimensional Cable Theory
Any changes in the axial current can arise 
only from the membrane current im . So,

Equating two membrane current expressions



OneOne--dimensional Cable Equationdimensional Cable Equation
In a more compact form the voltage can be 
written as 

Where                         and

One dimensional cable equation



Two Special Cases: Case 1Two Special Cases: Case 1
Assumption: A voltage          has been established 
using a voltage clamp i.e. the membrane voltage v is 
maintained constant in time at a particular point in 
space (         )
Cable equation reduces to

With solution

Inference: the voltage V falls of exponentially with 
distance from the point where it is held constant



Two Special Cases: Case 2Two Special Cases: Case 2
Consider a space clamp, where the membrane voltage 
is held constant in space and so partial derivatives in 
space vanish
Cable equation therefore reduces to

With solution

Inference: the voltage perturbations will decay in 
time exponentially, if the membrane is space 
clamped. If a step input is given then the voltage will 
rise exponentially to the step value

An exponential decay in
time with time constant τ



Compartmental ModelsCompartmental Models
Introduced by Rall
Dendritic tree

a collection of short 
cylindrical segments, where 
the tree attached at the end 
of each segment acts as a sink 
for the longitudinal current
divided into compartments 
whenever branching takes 
place or dendritic diameters 
change significantly

Compartmental modelling
approach

a finite-difference or discrete 
approximation to the non-
linear cable equation



Compartmental ModelsCompartmental Models
A single dendrite tree 
model can include thousands 
of compartments and as 
many equations for each 
time step
Dendritic segments that 
are physically short are 
assumed to be equipotential
and are modeled by a single 
RC membrane compartment



Compartmental ModelsCompartmental Models
Compartments are connected to each other in accordance 
with the topology of the tree with the help of resistances 
that model the longitudinal resistivity
Differences in physical properties of membranes and 
differences in potential are shown by a change in 
compartment
A dendritic tree divided into sufficiently small compartments 
has a solution to the compartmental model that is close to 
that of the continuous cable model
A compartment can represent a patch of membrane with a 
variety of voltage-gated (excitable) and synaptic (time-
varying) channels



Compartments yield Linear Compartments yield Linear 
Differential EquationsDifferential Equations

KCL for a segment of a dendritic tree is

In computer simulation the neuron is divided into 
compartments that are small enough so that the 
spatially varying transmembrane current im in any 
compartment j is well approximated by its value imj at 
the center of the compartment

Sum over all axial current that
flow into the region through
cross section boundaries

Transmembrane current 
density



Compartments yield Linear Compartments yield Linear 
Differential EquationsDifferential Equations

From ohm’s law, the voltage drop (Vk – Vj) between the 
centers of two compartments k and j, divided by the 
resistance rjk of the path between them yields the axial 
current 

Membrane current imjAj is the sum of capacitive and 
ionic components

Membrane capacitance of 
compartment j

Models the effect of 
ionic conductances



Compartments yield Linear Compartments yield Linear 
Differential EquationsDifferential Equations

Combining membrane current equations yield

Adding injected currents Iext result in

More the number of compartments the greater the 
simulation accuracy. Doubling the number of 
compartments increases the accuracy by four!



Computing with Spiking NeuronsComputing with Spiking Neurons
Focus will be on the nature of computations 
that can be performed with temporal 
patterns
Recent research involve computation in 
networks of neurons with unreliable 
synapses that compute using space-rate 
codes
There are features of the spiking neuron 
that have no analog in the artificial neuron 
world!



Coincidence DetectionCoincidence Detection
A coincidence detector can check whether 
the firing times of presynaptic neurons are 
almost the same or not
If the firing times of presynaptic neurons 
encode numbers, then a coincidence 
detector can tell us whether or not these 
numbers have almost the same value



Coincidence DetectionCoincidence Detection
Assumptions:

Each of n presynaptic
neurons to neuron I has 
the same transmission 
delay ∆ji = ∆ and their 
weights wji = 1
Each presynaptic neuron 
fires exactly once and 
generates a PSP
They generate identical 
PSP functions



Coincidence DetectionCoincidence Detection
PSPs are temporarily integrated by the neurons 
in a weighted fashion
If the PSPs are fired at intervals that are far 
apart, the integrated cell potential has a small 
chance of exceeding the threshold
If the PSPs are spaced at intervals that are 
close to one another, they add up and the 
chances that the integrated cell potential 
exceeds the threshold is much larger



Coincidence DetectionCoincidence Detection
If all n presynaptic neurons fire together (at the same 
instant) at time t1 then the PSPs are simply superposed in 
time and the integrated cell potential becomes

The resulted integrated cell potential is exactly the same 
shape, scaled up n times 



Coincidence DetectionCoincidence Detection
As the PSPs get spaced out in time, the peak of the integrated 
potential falls



Coincidence DetectionCoincidence Detection
There is an upper bound on the separation allowed 
that ensures that the integrated potential exceeds a 
threshold
For a given set of time constants, one can find values 
of spike separation d1, d2 where 0 < d1 < d2 and a 
threshold Vθ such that the integrated soma potential 
vi(t) remains less than Vθ for any arbitrary number of 
EPSPs that fire at times separated by a temporal 
distance greater than or equal to d2
vi(t) will reach a value greater than Vθ for any two
EPSPs that are separated temporally by a temporal 
distance that is less than or equal to d1



Element Distinctness Function Element Distinctness Function EDEDnn
The spiking neuron is capable of computing the 
element distinctness function EDn: Rn → {0,1}
ED function essentially computes whether the firing 
times t1,…tn of any pair of presynaptic neurons lie 
within a certain interval. The function can be defined 
as follows

A conventional artificial neural network that is to 
compute element distinctness function can become 
rather complex



Element Distinctness Function Element Distinctness Function EDEDnn

Theorem: Any layered networks of TLNs that 
computes EDn needs to have at least log(n!) ≥
n/2⋅log n threshold neurons in its first layer

Theorem: Any feedforward neural network 
consisting of arbitrary sigmoidal neurons 
needs to have at least (n-4)/2 neurons in 
order to compute EDn



Temporal Radial Basis Function Temporal Radial Basis Function 
NeuronsNeurons

Firing threshold Vθ and weights wji can be 
tuned in such a way that as to permit the 
spiking neuron to detect specific temporal 
patterns in the input
One can raise the value of Vθ to a point where 
the neuron fires a spike only if all the 
presynaptic pulses occur almost 
simultaneously
Let us consider three presynaptic neurons as 
inputs with weights wji = 1



Temporal Radial Basis Function Temporal Radial Basis Function 
NeuronsNeurons

Each neuron fires a spike that results in the EPSP kernel 
function
When all three occur simultaneously the resulting soma 
potential is scaled up three times
If we fix the threshold to be 2.0 then simultaneous firing 
makes the soma potential exceed the threshold



Temporal Radial Basis Function Temporal Radial Basis Function 
NeuronsNeurons

A separation of 0.1 between the firing times of the 
three neurons still make the soma potential exceed 
the threshold
A separation of 0.2 between the firing times results 
in a soma potential that falls short of the threshold



Temporal Radial Basis Function Temporal Radial Basis Function 
NeuronsNeurons

Spiking neuron fires only if all the presynaptic
neurons fire at approximately the same time
Infact the neuron is detecting whether or not the 
firing times of all presynaptic neuron lie within a  
certain time interval
This neuron is temporal radial basis function 
(TRBF) neuron
A TRBF neuron fires only if, for some constant TI
all presynaptic neurons have firing times tj ≈ TI -
∆ji with the transmission delay vector (∆1i,…,∆ni)
behaving like the temporal center of the neuron



Computing Weighted SumsComputing Weighted Sums
For multilayered or recurrent computations with 
spiking neurons we need to generate analog or 
numeric outputs that are dependent on the input 
through a weighted sum            for numeric inputs 
X ∈ Rn and weight coefficients            . This 
summation has to be computed through the firing 
time of neuron i
Therefore the mechanism has to shift the firing 
time of the neuron in accordance with the 
magnitude of the weighted sum

∑
j

jji xw~

n
ji Rw ∈~



Computing Weighted SumsComputing Weighted Sums
Assumptions

each PSP kernel has a linearly rising phase that 
starts after the axonal transmission delay ∆ji
elapses 
The function κji(t) can be approximated by a 
straight line equation with slope mji ∈ R for a 
time interval TL > 0
Presynaptic neurons j fire at times tj = TI - xj



Coding Numeric InputsCoding Numeric Inputs
The numeric inputs xj are coded into 
firing times of presynaptic neurons such 
that the larger the xj earlier the 
corresponding presynaptic neuron fires
Thus a numeric input vector translates 
to a vector of firing times of presynaptic
neurons



Computing with Weighted SumsComputing with Weighted Sums
Let the cell potential vi reaches the 
threshold Vθ while all the PSPs
generated are still in their linear phases
This allows to compute the cell potential 
as a superposition of linear functions
Assuming that neuron i fires at time ti
we can write



Computing with Weighted SumsComputing with Weighted Sums
Linear approximation of the kernel function for the 
time period ti-(tj+∆ji) gives

which yields

with proper substitutions 

Constant that depends
on synaptic weights
kernel slopes



Computing with Weighted SumsComputing with Weighted Sums
The neuron firing time equation can be rearranged 
as

Clearly, the firing time of neuron i essentially 
codes a weighted sum of the inputs
The larger the weighted sum, the earlier the firing 
time with respect to time TO and the smaller the 
weighted sum, the later the firing time



Spiking Neurons are Universal Spiking Neurons are Universal 
ApproximatorsApproximators

Neural networks with the linear threshold 
neurons in their hidden layer can universally 
approximate continuous functions
Somehow we have to simulate a linear 
threshold signal function with a spiking 
neuron
Then, spiking neurons can approximate 
continuous functions with arbitrary 
accuracy



Simulating Linear Threshold Simulating Linear Threshold 
Signal FunctionSignal Function

The linear threshold signal function 
can be simulated using a spiking 
neuron by coding the function into the 
firing times of the neuron



Simulating Linear Threshold Simulating Linear Threshold 
Signal FunctionSignal Function

The neuron i now fires at times ti with the function

where presynaptic neurons fire at times tj = TI – xj

The above equation describes the following:
Neuron i does not fire before TO – T to simulate the condition

Neuron i does not fire after TO to simulate the condition
Neuron i adjusts its firing time between TO-T and TO in 
accordance with the value of                 to simulate the condition

∑ ≥1~
jji xw

∑ jji xw~

∑ ≥≤ 1~0 jji xw



Simulating Linear Threshold Simulating Linear Threshold 
Signal FunctionSignal Function

One can therefore construct a layered 
network of such neurons that simulate the 
linear threshold signal function
Remember: the basis of the entire 
discussion of universal approximation rests 
on the assumption that the initial segments 
of the PSP kernels are linear and 
computation takes place with these 
approximated kernels



Universal Approximation Universal Approximation 
Theorem for Spiking NeuronsTheorem for Spiking Neurons

Theorem: Any feedforward or recurrent 
analog neural network that consists of s
linear threshold neurons can be 
simulated arbitrarily closely with a 
spiking neural network of c spiking 
neurons with analog inputs and outputs 
encoded by temporal delay of spikes. 
This holds even if the spiking neurons 
are subject to noise



Universal Approximation Universal Approximation 
Theorem for Spiking NeuronsTheorem for Spiking Neurons

Corollary: Any given continuous function        
can be approximated 

arbitrarily closely by a network of 
spiking neurons with inputs and outputs 
encoded by temporal delays


