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Neural Networks and Neural Networks and 
the Soft Computing the Soft Computing 
ParadigmParadigm



The Quest for Computational The Quest for Computational 
Intelligence?Intelligence?

Soft computing, a term coined by Zadeh is basically a 
synergistic integration of three computing paradigms: 

neural networks
fuzzy logic
probabilistic reasoning (which subsumes belief networks genetic 
algorithms and chaotic systems)

Bezdek called the synergism of fuzzy logic, neural networks 
and genetic algorithms as computational intelligence. 



Soft Computing/Soft Computing/
Computational IntelligenceComputational Intelligence

Learning
Generalization

Neural Networks

Global search

Evolutionary
Algorithms

Linguistic information
Approximate reasoning

Fuzzy Logic



Machine Intelligence QuotientMachine Intelligence Quotient
Provides a framework for flexible information 
processing applications designed to operate in 
the real world.
Soft computing technologies 

are robust by design
operate by trading off precision for tractability.
can handle uncertainty with ease
conform better with real world situations
provide lower solution costs. 

Primary focus and major contribution is to 
increase the machine intelligence quotient
(MIQ)



Computational Intelligence (CI)Computational Intelligence (CI)

Involves computing that exhibits the ability to 
learn and/or to deal with new situations 
Applications where the system is perceived to 
possess one or more attributes of reason, such 
as

generalization
discovery, 
association and 
abstraction.



Computational IntelligenceComputational Intelligence

Implementations

Paradigms

Algorithms
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SiliconSilicon--based Computational based Computational 
Intelligence SystemsIntelligence Systems

Usually comprise hybrids 
of paradigms such as:

artificial neural 
networks
fuzzy systems
evolutionary algorithms

Augmented with expert 
knowledge elements
Often designed to mimic 
one or more aspects of 
carbon-based biological 
intelligence.

Fuzzy 
Logic

Neural 
Networks

Evolutionary
Algorithms

Neuro-Fuzzy-Evolutionary Systems



Good candidates for CIGood candidates for CI
Fuzzy, imprecise or imperfect data
No available mathematical algorithm
Optimal solution unknown
Rapid prototyping required
Only domain experts available
Robust system required



HintsHints

Acquire basic knowledge before experimenting
Pay special attention to data representation and 
preprocessing
Components such as ANNs can be on “front end”, 
“back end”, or in middle
Combinations of concepts, paradigms, and 
architectures are feasible, but can be difficult 
to implement successfully



Application Domains (1)Application Domains (1)
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Application Domains (2)Application Domains (2)
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Application Domains (3)Application Domains (3)
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Application Domains (4)Application Domains (4)
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Inspiration for Computational Inspiration for Computational 
IntelligenceIntelligence

CI has been inspired 
by two fundamental 
questions:

How does the human 
brain work ? 
How can we exploit 

the brain metaphor to 
build intelligent 
machines ?



Biological Neuron: Computing DeviceBiological Neuron: Computing Device



Artificial NeuronArtificial Neuron
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Power of Power of NNsNNs: Learning: Learning

Training set:
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Fuzziness in the Real WorldFuzziness in the Real World

How is one to 
represent notions like:

large profit
high pressure
tall man
wealthy woman
moderate temperature.

And statements like:
Most experts believe 
that the likelihood of a 
severe earthquake in 
the near future is very
low.
Usually it takes about
an hour to drive from 
Berkeley to Stanford 
in light traffic. 



Founder of FuzzinessFounder of Fuzziness

Lotfi Zadeh, Director, Berkeley Initiative in Soft 
Computing (BISC) 
University of California Berkeley, CA 94720 -1776 
http://www.cs.berkeley.edu/People/Faculty/
Homepages/zadeh.html

In 1965, Lotfi Zadeh introduced the theory of fuzzy sets:  A 
fuzzy set is a collection of objects that might belong to the 
set to a degree, varying from 1 for full belongingness to 0 for 
full non-belongingness, through all intermediate values.



Fuzzy Sets are FunctionsFuzzy Sets are Functions

Mathematically we have a membership function :

]1,0[:)( →− XxAGEDMIDDLEµ

where X is the universe of discourse (UOD)



Example: Classical SetExample: Classical Set
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Example: Fuzzy SetExample: Fuzzy Set
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Fuzzy SystemsFuzzy Systems

Rule
Base

Fuzzification
Interface

Inference
Engine

Defuzzifier



FuzzyFuzzy--Neural IntegrationNeural Integration
FL provides

a high level framework for 
approximate reasoning
can appropriately handle both the 
uncertainty and imprecision in 
linguistic semantics
help model expert heuristics
provide requisite high level organising 
principles.



FuzzyFuzzy--Neural IntegrationNeural Integration
NN's provide

self-organising substrate architectures
low level representation of information
on-line adaptation capabilities.

It is useful to combine these approaches in 
the development of intelligent systems.
Such cohesive systems are referred to as 
fuzzy-neural systems or fuzzy neural 
networks. 



A Simple Fuzzy Neural NetworkA Simple Fuzzy Neural Network
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Evolutionary ComputationEvolutionary Computation
Genetic algorithms 
Evolutionary strategies
Genetic programming
Differential evolution



Origins of Origins of EAsEAs: Two Books: Two Books
1966, Fogel, Owens, and Walsh, Artificial Intelligence through 
Simulated Evolution, John Wiley & Sons

Looked at derivation of
finite-state machines
controllers
data reduction

through successive mutations

1975, John H. Holland, Adaptation in natural and artificial 
systems, MIT Press

Focus was on natural systems, simulation
Introduced current genetic algorithm idea
Mostly theory, some applications to:

game-playing
search programs



Evolutionary AlgorithmsEvolutionary Algorithms
Provide a straightforward approach to solve 
difficult optimization problems
Heuristic in nature
No guarantee to find an optimal solution
However, can find good “near optimal” solutions 
fast
Applications target optimization problems in 
almost any discipline: engineering, science, 
finance…



EAsEAs Derive Inspiration from Natural Derive Inspiration from Natural 
SelectionSelection

Represent the problem as a string of binary or 
real numbers
Start with a population of such random solutions
Focus on the entire population rather than a 
single individual
Individuals that are fit enough to survive will 
reproduce
Create new individuals from existing ones

Crossover 
Mutation



Applications of Applications of EAsEAs to NN and to NN and 
FSFS

Application to neural networks:
Evolve the weights of a neural network
Evolve the architecture: how many hidden 
nodes are enough?

Application to fuzzy systems
Search membership functions automatically
Find optimal structures of neuro-fuzzy 
systems
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A A NeuroNeuro Fuzzy SystemFuzzy System
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Issue 1: Issue 1: 
Embedding Rule Base KnowledgeEmbedding Rule Base Knowledge

R= If  x1 is MEDIUM and x2 is SMALL then y1 is  LARGE

Medium
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Input node 1

Rule  node 1 Output  node 1

Input node 2

Output UODInput UOD



EntropyEntropy
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Mutual Mutual SubsethoodSubsethood

The mutual subsethood measures the degree to 
which fuzzy set A equals fuzzy set B. 
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Subsethood measures the degree to which set A belongs to or 
is a subset of set B



FuzzificationFuzzification of numeric inputsof numeric inputs
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Composition of mixed inputs with Composition of mixed inputs with 
fuzzy weightsfuzzy weights

1.3

Mutual subsethood

Mutual subsethood

Input 
Fuzzifier

Numeric input
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Rule Node Output Node
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Linguistic
Input node



Activity AggregationActivity Aggregation
Mutual Subsethood

1.3

Mutual Subsethood
Input 
Fuzzifier

Numeric input
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Rule Node Output Node
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Z1

Linguistic
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DefuzzificationDefuzzification
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Activity Calculation at Output LayerActivity Calculation at Output Layer
Defuzzification is done by each node in this layer using 
the volume based defuzzification (modified COG)
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Truck Backer Upper Control ProblemTruck Backer Upper Control Problem

Backing up a truck to loading dock
Φ : Angle of the truck 

with the horizontal
x, y : coordinates in 

the space
Θ : steering angle
b : length of truck
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Design of Truck Backer Upper Design of Truck Backer Upper 
ControlControl

Enough clearance assumed between the 
truck and the loading dock such that the 
coordinate y can be ignored.
Range of x : 0 to 20
Range of Φ : -90º to 270º
Range of θ : -40º to +40º

Control value of Control value of θθ
such that thesuch that the
final state (xfinal state (xff, , ΦΦff)= )= 
(10, 90º)(10, 90º)

SuPFuNIS

x

Φ
θ



Data Set DetailsData Set Details
Numeric data comprises of 238 pairs accumulated from 14 
sequences of desired (x,Φ,θ ) values (Wang/Mendel, 1992).
The 14 initial states (x,Φ,θ ) are (1,0), (1,90), (1,270), 
(7,0), (7,90), (7,180), (7,270), (13,0), (13,90), 
(13,180),(13,270), (19,90), (19,180), (19,270). 
The data was linearly normalized in the range [0,1] and 
used to train SuPFuNIS for different numbers of rules. 
The free parameters for this application are 6r+2. 
Three initial states, (x,Φ,θ ) = (3,30),(10,220), and (13,30) 
were used to test the performance of the controller.



Sample Data SetSample Data Set
1.00 90.00 18.00
1.15 81.11 16.00
1.43 73.19 14.00
1.83 66.24 12.00
2.31 60.27 10.00
2.88 55.29 8.00
3.50 51.30 6.00
4.16 48.31 4.00
4.86 46.31 2.00
5.56 45.31 0.00
6.26 45.31 -2.00
6.95 46.31 -4.00
7.61 48.31 -6.00
8.23 51.30 -8.00
8.79 55.29 -10.00
9.28 60.27 -12.00
9.67 66.24 -14.00
9.95 73.19 -16.00
10.09 81.11 -18.00
10.09 90.00 0.00

1.00 0.00 -19.00
1.95 9.37 -17.95
2.88 18.23 -16.90
3.79 26.59 -15.85
4.65 34.44 -14.80
5.45 41.78 -13.75
6.18 48.60 -12.70
7.48 54.91 -11.65
7.99 60.71 -10.60
8.72 65.99 -9.55
9.01 70.75 -8.50
9.28 74.98 -7.45
9.46 78.70 -6.40
9.59 81.90 -5.34
9.72 84.57 -4.30
9.81 86.72 -3.25
9.88 88.34 -2.20
9.91 89.44 0.00

Starting Point (1,0) Starting Point (1,90)



Truck Backer Upper TrajectoriesTruck Backer Upper Trajectories

5 rules3 rules



Performance MeasurePerformance Measure
The performance of the controller is 
considered good if a proper balance is 
maintained between the type of trajectory and 
trajectory destination.

Normalized Docking Error (NDE)
Trajectory Error (TE)
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Docking and Trajectory ErrorsDocking and Trajectory Errors
Errors when 238 pairs of numeric data are used 

For 5 rule SuPFuNIS

Initial point 
(x,y,ф)

Normalized 
Docking Error

Trajectory 
Error

(13,3,30) 0.0058 1.0533

(10,4,220) 0.0120 1.2059

(3,3,-30) 0.0088 1.2106



Augmentation of Augmentation of SuPFUNISSuPFUNIS with with 
Expert Linguistic KnowledgeExpert Linguistic Knowledge

Training is done using reduced set (42 pairs) considering only first 
three pairs of data from each of the 14 sequences.
Finer control is done using the linguistic rules constructed from the 
expert knowledge.
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Fuzzy sets for linguistic labels of x, Fuzzy sets for linguistic labels of x, 
φφ, , θθ

x-position x (center,spread)

L:Left (0.35,0.098)
C: Center (0.5,0.028)
R:Right (0.65,0.098)

Angle φ (center,spread)

LV: Left Vertical (0.375,0.059)
VE: Vertical (0.5,0.016)
RV: Right Vertical (0.625,0.059)

Steering-angle signal θ (center,spread)

NB: Negative Big (0.00,0.14)
NM: Negative  Medium (0.25,0.092)
NS: Negative Small (0.4125,0.05)
ZE: Zero (0.5,0.028)
PS: Positive Small (0.5875,0.05)
PM: Positive Medium (0.75,0.092)
PB: Positive  Big (1.00, 0.14)

L C R

LV VE RV

NB NM NS ZE PBPMPS



Truck Backer Upper TrajectoriesTruck Backer Upper Trajectories
5 rules (reduced 
numeric data)

5 rules (reduced 
numeric data) + 5 
expert rules



Truck Backer Upper TrajectoriesTruck Backer Upper Trajectories
5 rules(reduced
numeric data) + 9 
expert rules

Comparison of (a), 
(b), (c)  for  3,3,-30



Docking and Trajectory ErrorsDocking and Trajectory Errors
Initial point

(x, y, ф)
Rules 

Numeric+ Linguistic
Normalized

Docking Error
Trajectory

Error
(3,3,-30) 5+0 0.0277 1.148649

(10,4,220)) 5+0 0.0531 1.282923
(13,3,30)) 5+0 0.0428 1.059538
(3,3,-30) 5+5 0.0158 1.152186

(10,4,220)) 5+5 0.0332 1.282707
(13,3,30)) 5+5 0.0259 1.059563
(3,3,-30) 5+9 0.0065 1.155053

(10,4,220)) 5+9 0.0166 1.211574
(13,3,30)) 5+9 0.0107 1.055119


